scholarly journals Incompatibilities Between Iterated and Relevance-Sensitive Belief Revision

2020 ◽  
Vol 69 ◽  
pp. 85-108
Author(s):  
Theofanis Aravanis ◽  
Pavlos Peppas ◽  
Mary-Anne Williams

The AGM paradigm for belief change, as originally introduced by Alchourron, Gärdenfors and Makinson, lacks any guidelines for the process of iterated revision. One of the most influential work addressing this problem is Darwiche and Pearl's approach (DP approach, for short), which, despite its well-documented shortcomings, remains to this date the most dominant. In this article, we make further observations on the DP approach. In particular, we prove that the DP postulates are, in a strong sense, inconsistent with Parikh's relevance-sensitive axiom (P), extending previous initial conflicts. Immediate consequences of this result are that an entire class of intuitive revision operators, which includes Dalal's operator, violates the DP postulates, as well as that the Independence postulate and Spohn's conditionalization are inconsistent with axiom (P). The whole study, essentially, indicates that two fundamental aspects of the revision process, namely, iteration and relevance, are in deep conflict, and opens the discussion for a potential reconciliation towards a comprehensive formal framework for knowledge dynamics.

Author(s):  
Giovanni Casini ◽  
Thomas Meyer ◽  
Ivan Varzinczak

We present a formal framework for modelling belief change within a nonmonotonic reasoning system. Belief change and non-monotonic reasoning are two areas that are formally closely related, with recent attention being paid towards the analysis of belief change within a non-monotonic environment. In this paper we consider the classical AGM belief change operators, contraction and revision, applied to a defeasible setting in the style of Kraus, Lehmann, and Magidor. The investigation leads us to the consideration of the problem of iterated change, generalising the classical work of Darwiche and Pearl. We characterise a family of operators for iterated revision, followed by an analogous characterisation of operators for iterated contraction. We start considering belief change operators aimed at preserving logical consistency, and then characterise analogous operators aimed at the preservation of coherence—an important notion within the field of logic-based ontologies.


2020 ◽  
Vol 30 (7) ◽  
pp. 1357-1376
Author(s):  
Theofanis Aravanis

Abstract Rational belief-change policies are encoded in the so-called AGM revision functions, defined in the prominent work of Alchourrón, Gärdenfors and Makinson. The present article studies an interesting class of well-behaved AGM revision functions, called herein uniform-revision operators (or UR operators, for short). Each UR operator is uniquely defined by means of a single total preorder over all possible worlds, a fact that in turn entails a significantly lower representational cost, relative to an arbitrary AGM revision function, and an embedded solution to the iterated-revision problem, at no extra representational cost. Herein, we first demonstrate how weaker, more expressive—yet, more representationally expensive—types of uniform revision can be defined. Furthermore, we prove that UR operators, essentially, generalize a significant type of belief change, namely, parametrized-difference revision. Lastly, we show that they are (to some extent) relevance-sensitive, as well as that they respect the so-called principle of kinetic consistency.


Author(s):  
Theofanis Aravanis ◽  
Pavlos Peppas ◽  
Mary-Anne Williams

Notwithstanding the extensive work on iterated belief revision, there is, still, no fully satisfactory solution within the classical AGM paradigm. The seminal work of Darwiche and Pearl (DP approach, for short) remains the most dominant, despite its well-documented shortcomings. In this article, we make further observations on the DP approach. Firstly, we prove that the DP postulates are, in a strong sense, inconsistent with Parikh's relevance-sensitive axiom (P), extending previous initial conflicts. Immediate consequences of this result are that an entire class of intuitive revision operators, which includes Dalal's operator, violates the DP postulates, as well as that the Independence postulate and Spohn's conditionalization are inconsistent with (P). Lastly, we show that the DP postulates allow for more revision polices than the ones that can be captured by identifying belief states with total preorders over possible worlds, a fact implying that a preference ordering (over possible worlds) is an insufficient representation for a belief state.


Author(s):  
Theofanis Aravanis

Belief Revision is a well-established field of research that deals with how agents rationally change their minds in the face of new information. The milestone of Belief Revision is a general and versatile formal framework introduced by Alchourrón, Gärdenfors and Makinson, known as the AGM paradigm, which has been, to this date, the dominant model within the field. A main shortcoming of the AGM paradigm, as originally proposed, is its lack of any guidelines for relevant change. To remedy this weakness, Parikh proposed a relevance-sensitive axiom, which applies on splittable theories; i.e., theories that can be divided into syntax-disjoint compartments. The aim of this article is to provide an epistemological interpretation of the dynamics (revision) of splittable theories, from the perspective of Kuhn's inuential work on the evolution of scientific knowledge, through the consideration of principal belief-change scenarios. The whole study establishes a conceptual bridge between rational belief revision and traditional philosophy of science, which sheds light on the application of formal epistemological tools on the dynamics of knowledge.


Author(s):  
LAURENT PERRUSSEL ◽  
JEAN-MARC THÉVENIN

This paper focuses on the features of belief change in a multi-agent context where agents consider beliefs and disbeliefs. Disbeliefs represent explicit ignorance and are useful to prevent agents to entail conclusions due to their ignorance. Agents receive messages holding information from other agents and change their belief state accordingly. An agent may refuse to adopt incoming information if it prefers its own (dis)beliefs. For this, each agent maintains a preference relation over its own beliefs and disbeliefs in order to decide if it accepts or rejects incoming information whenever inconsistencies occur. This preference relation may be built by considering several criteria such as the reliability of the sender of statements or temporal aspects. This process leads to non-prioritized belief revision. In this context we first present the * and − operators which allow an agent to revise, respectively contract, its belief state in a non-prioritized way when it receives an incoming belief, respectively disbelief. We show that these operators behave properly. Based on this we then illustrate how the receiver and the sender may argue when the incoming (dis)belief is refused. We describe pieces of dialog where (i) the sender tries to convince the receiver by sending arguments in favor of the original (dis)belief and (ii) the receiver justifies its refusal by sending arguments against the original (dis)belief. We show that the notion of acceptability of these arguments can be represented in a simple way by using the non-prioritized change operators * and −. The advantage of argumentation dialogs is twofold. First whenever arguments are acceptable the sender or the receiver reconsider its belief state; the main result is an improvement of the reconsidered belief state. Second the sender may not be aware of some sets of rules which act as constraints to reach a specific conclusion and discover them through argumentation dialogs.


1999 ◽  
Vol 10 ◽  
pp. 117-167 ◽  
Author(s):  
N. Friedman ◽  
J. Y. Halpern

The study of belief change has been an active area in philosophy and AI. In recent years two special cases of belief change, belief revision and belief update, have been studied in detail. In a companion paper (Friedman & Halpern, 1997), we introduce a new framework to model belief change. This framework combines temporal and epistemic modalities with a notion of plausibility, allowing us to examine the change of beliefs over time. In this paper, we show how belief revision and belief update can be captured in our framework. This allows us to compare the assumptions made by each method, and to better understand the principles underlying them. In particular, it shows that Katsuno and Mendelzon's notion of belief update (Katsuno & Mendelzon, 1991a) depends on several strong assumptions that may limit its applicability in artificial intelligence. Finally, our analysis allow us to identify a notion of minimal change that underlies a broad range of belief change operations including revision and update.


Studia Logica ◽  
2021 ◽  
Author(s):  
Sena Bozdag

AbstractI propose a novel hyperintensional semantics for belief revision and a corresponding system of dynamic doxastic logic. The main goal of the framework is to reduce some of the idealisations that are common in the belief revision literature and in dynamic epistemic logic. The models of the new framework are primarily based on potentially incomplete or inconsistent collections of information, represented by situations in a situation space. I propose that by shifting the representational focus of doxastic models from belief sets to collections of information, and by defining changes of beliefs as artifacts of changes of information, we can achieve a more realistic account of belief representation and belief change. The proposed dynamic operation suggests a non-classical way of changing beliefs: belief revision occurs in non-explosive environments which allow for a non-monotonic and hyperintensional belief dynamics. A logic that is sound with respect to the semantics is also provided.


Studia Logica ◽  
2021 ◽  
Author(s):  
Sven Ove Hansson

AbstractThis article investigates the properties of multistate top revision, a dichotomous (AGM-style) model of belief revision that is based on an underlying model of probability revision. A proposition is included in the belief set if and only if its probability is either 1 or infinitesimally close to 1. Infinitesimal probabilities are used to keep track of propositions that are currently considered to have negligible probability, so that they are available if future information makes them more plausible. Multistate top revision satisfies a slightly modified version of the set of basic and supplementary AGM postulates, except the inclusion and success postulates. This result shows that hyperreal probabilities can provide us with efficient tools for overcoming the well known difficulties in combining dichotomous and probabilistic models of belief change.


Sign in / Sign up

Export Citation Format

Share Document