scholarly journals Constructing weak simulations from linear implications for processes with private names

2019 ◽  
Vol 29 (8) ◽  
pp. 1275-1308 ◽  
Author(s):  
Ross Horne ◽  
Alwen Tiu

AbstractThis paper clarifies that linear implication defines a branching-time preorder, preserved in all contexts, when used to compare embeddings of process in non-commutative logic. The logic considered is a first-order extension of the proof system BV featuring a de Morgan dual pair of nominal quantifiers, called BV1. An embedding of π-calculus processes as formulae in BV1 is defined, and the soundness of linear implication in BV1 with respect to a notion of weak simulation in the π -calculus is established. A novel contribution of this work is that we generalise the notion of a ‘left proof’ to a class of formulae sufficiently large to compare embeddings of processes, from which simulating execution steps are extracted. We illustrate the expressive power of BV1 by demonstrating that results extend to the internal π -calculus, where privacy of inputs is guaranteed. We also remark that linear implication is strictly finer than any interleaving preorder.

2015 ◽  
Vol 21 (1) ◽  
pp. 86-99
Author(s):  
Е. А. Котикова ◽  
М. Н. Рыбаков

We study an expressive power of temporal operators used in such logics of branching time as computational tree logic or alternating-time temporal logic. To do this we investigate calculi in the first-order language enriched with the temporal operators used in such logics. We show that the resulting languages are so powerful that many ‘natural’ calculi in the languages are not Kripke complete; for example, if a calculus in such language is correct with respect to the class of all serial linear Kripke frames (even just with constant domains) then it is not Kripke complete. Some near questions are discussed.


1998 ◽  
Vol 63 (4) ◽  
pp. 1582-1596 ◽  
Author(s):  
Jan Krajíček

AbstractWe define a first-order extension LK(CP) of the cutting planes proof system CP as the first-order sequent calculus LK whose atomic formulas are CP-inequalities ∑i ai · xi ≥ b (xi's variables, ai's and b constants). We prove an interpolation theorem for LK(CP) yielding as a corollary a conditional lower bound for LK(CP)-proofs. For a subsystem R(CP) of LK(CP), essentially resolution working with clauses formed by CP-inequalities, we prove a monotone interpolation theorem obtaining thus an unconditional lower bound (depending on the maximum size of coefficients in proofs and on the maximum number of CP-inequalities in clauses). We also give an interpolation theorem for polynomial calculus working with sparse polynomials.The proof relies on a universal interpolation theorem for semantic derivations [16, Theorem 5.1].LK(CP) can be viewed as a two-sorted first-order theory of Z considered itself as a discretely ordered Z-module. One sort of variables are module elements, another sort are scalars. The quantification is allowed only over the former sort. We shall give a construction of a theory LK(M) for any discretely ordered module M (e.g., LK(Z) extends LK(CP)). The interpolation theorem generalizes to these theories obtained from discretely ordered Z-modules. We shall also discuss a connection to quantifier elimination for such theories.We formulate a communication complexity problem whose (suitable) solution would allow to improve the monotone interpolation theorem and the lower bound for R(CP).


Author(s):  
Francesco Belardinelli ◽  
Andreas Herzig

We introduce a first-order extension of dynamic logic (FO-DL), suitable to represent and reason about the behaviour of Data-aware Systems (DaS), which are systems whose data content is explicitly exhibited in the system’s description. We illustrate the expressivity of the formal framework by modelling English auctions as DaS, and by specifying relevant properties in FO-DL. Most importantly, we develop an abstraction-based verification procedure, thus proving that the model checking problem for DaS against FO-DL is actually decidable, provided some mild assumptions on the interpretationdomain.


Author(s):  
Stewart Shapiro

Typically, a formal language has variables that range over a collection of objects, or domain of discourse. A language is ‘second-order’ if it has, in addition, variables that range over sets, functions, properties or relations on the domain of discourse. A language is third-order if it has variables ranging over sets of sets, or functions on relations, and so on. A language is higher-order if it is at least second-order. Second-order languages enjoy a greater expressive power than first-order languages. For example, a set S of sentences is said to be categorical if any two models satisfying S are isomorphic, that is, have the same structure. There are second-order, categorical characterizations of important mathematical structures, including the natural numbers, the real numbers and Euclidean space. It is a consequence of the Löwenheim–Skolem theorems that there is no first-order categorical characterization of any infinite structure. There are also a number of central mathematical notions, such as finitude, countability, minimal closure and well-foundedness, which can be characterized with formulas of second-order languages, but cannot be characterized in first-order languages. Some philosophers argue that second-order logic is not logic. Properties and relations are too obscure for rigorous foundational study, while sets and functions are in the purview of mathematics, not logic; logic should not have an ontology of its own. Other writers disqualify second-order logic because its consequence relation is not effective – there is no recursively enumerable, sound and complete deductive system for second-order logic. The deeper issues underlying the dispute concern the goals and purposes of logical theory. If a logic is to be a calculus, an effective canon of inference, then second-order logic is beyond the pale. If, on the other hand, one aims to codify a standard to which correct reasoning must adhere, and to characterize the descriptive and communicative abilities of informal mathematical practice, then perhaps there is room for second-order logic.


1983 ◽  
Vol 27 (1-2) ◽  
pp. 197-209 ◽  
Author(s):  
A.P. Stolboushkin ◽  
M.A. Taitslin

2007 ◽  
Vol 17 (3) ◽  
pp. 439-484 ◽  
Author(s):  
CLEMENS GRABMAYER

This paper presents a proof-theoretic observation about two kinds of proof systems for bisimilarity between cyclic term graphs.First we consider proof systems for demonstrating that μ term specifications of cyclic term graphs have the same tree unwinding. We establish a close connection between adaptations for μ terms over a general first-order signature of the coinductive axiomatisation of recursive type equivalence by Brandt and Henglein (Brandt and Henglein 1998) and of a proof system by Ariola and Klop (Ariola and Klop 1995) for consistency checking. We show that there exists a simple duality by mirroring between derivations in the former system and formalised consistency checks, which are called ‘consistency unfoldings', in the latter. This result sheds additional light on the axiomatisation of Brandt and Henglein: it provides an alternative soundness proof for the adaptation considered here.We then outline an analogous duality result that holds for a pair of similar proof systems for proving that equational specifications of cyclic term graphs are bisimilar.


2013 ◽  
Vol 6 (2) ◽  
pp. 254-280 ◽  
Author(s):  
FAUSTO BARBERO

AbstractWe analyze the behaviour of declarations of independence between existential quantifiers in quantifier prefixes of Independence-Friendly (IF) sentences; we give a syntactical criterion to decide whether a sentence beginning with such prefix exists, such that its truth values may be affected by removal of the declaration of independence. We extend the result also to equilibrium semantics values for undetermined IF sentences.The main theorem defines a schema of sound and recursive inference rules; we show more explicitly what happens for some simple special classes of sentences.In the last section, we extend the main result beyond the scope of prenex sentences, in order to give a proof of the fact that the fragment of IF sentences with knowledge memory has only first-order expressive power.


2002 ◽  
Vol 13 (03) ◽  
pp. 315-340 ◽  
Author(s):  
J. I. DEN HARTOG ◽  
E. P. DE VINK

Probability, be it inherent or explicitly introduced, has become an important issue in the verification of programs. In this paper we study a formalism which allows reasoning about programs which can act probabilistically. To describe probabilistic programs, a basic programming language with an operator for probabilistic choice is introduced and a denotational semantics is given for this language. To specify propertics of probabilistic programs, standard first order logic predicates are insufficient, so a notion of probabilistic predicates is introduced. A Hoare-style proof system to check properties of probabilistic programs is given. The proof system for a sublanguage is shown to be sound and complete; the properties that can be derived are exactly the valid properties. Finally some typical examples illustrate the use of the probabilistic predicates and the proof system.


Sign in / Sign up

Export Citation Format

Share Document