Proposing a new strategy in multi-seismic attribute combination for identification of buried channel

2021 ◽  
Vol 42 (4) ◽  
Author(s):  
Hassan Khasraji-Nejad ◽  
Amin Roshandel Kahoo ◽  
Mehrdad Soleimani Monfared ◽  
Mohammad Radad ◽  
Keyvan Khayer
2020 ◽  
Author(s):  
Yuanyuan Wang ◽  
Cui Wang

Abstract Seismic attributes, which are extracted from seismic information, are physical indexes used specificallyfor the measurement of geometric, dynamic, or statistical characteristics of seismic data. Current methods for seismic multi-attribute inversion include linear and nonlinear methods. By adopting the wireless module of NFC24l01, combined with the seismic data acquisition sensor, constitutes an intelligent network sensor, and then it sends the collected data to the topmost machine for analysis. Methods for the nonlinear inversion of seismic multi-attributes usually employ tools such as neural networks and support vector machines (SVMs)for mapping. Hence, inversion results obtained via nonlinear methodsare more accurate than those obtained via linear methods. In this work, with spontaneous-potential (SP) curves as the objective of nonlinear inversion, an optimized seismic attribute combination for the inversion of SP curves was identified, and the nonlinear inversion of seismic multi-attributes was achieved via the use of a deep neural network (DNN) to obtain 3D SP data. Finally, the foresetting process of a sand body of the intermediate section in Member 3 of the Shahejie Formation in the Dongying Delta was illustrated via the horizon slice of the SP data.


2020 ◽  
Author(s):  
Yuanyuan Wang ◽  
Cui Wang

Abstract Seismic attributes, which are extracted from seismic information, are physical indexes used specificallyfor the measurement of geometric, dynamic, or statistical characteristics of seismic data. Current methods for seismic multi-attribute inversion include linear and nonlinear methods. By adopting the wireless module of NFC24l01, combined with the seismic data acquisition sensor, constitutes an intelligent network sensor, and then it sends the collected data to the topmost machine for analysis. Methods for the nonlinear inversion of seismic multi-attributes usually employ tools such as neural networks and support vector machines (SVMs)for mapping. Hence, inversion results obtained via nonlinear methodsare more accurate than those obtained via linear methods. In this work, with spontaneous-potential (SP) curves as the objective of nonlinear inversion, an optimized seismic attribute combination for the inversion of SP curves was identified, and the nonlinear inversion of seismic multi-attributes was achieved via the use of a deep neural network (DNN) to obtain 3D SP data. Finally, the foresetting process of a sand body of the intermediate section in Member 3 of the Shahejie Formation in the Dongying Delta was illustrated via the horizon slice of the SP data.


Haemophilia ◽  
2001 ◽  
Vol 7 (4) ◽  
pp. 416-418 ◽  
Author(s):  
M. Acquila ◽  
F. Bottini ◽  
A. Valetto ◽  
D. Caprino ◽  
P. G. Mori ◽  
...  

2012 ◽  
Vol 45 (15) ◽  
pp. 12-13
Author(s):  
BRUCE JANCIN
Keyword(s):  
Low Risk ◽  

2006 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
S.M. Mahalingam ◽  
S. Vijayasaradhi ◽  
I.S. Aidhen
Keyword(s):  

Planta Medica ◽  
2015 ◽  
Vol 81 (11) ◽  
Author(s):  
T Villani ◽  
K Gustafson ◽  
J Zhen ◽  
JE Simon ◽  
Q Wu
Keyword(s):  

2004 ◽  
pp. 107-117
Author(s):  
Z. Romanova

The article is devoted to the analysis of economic and financial problems and contradictions accumulated in Latin America under conditions of globalization and market liberation. The originated unfavorable changes gave rise to the need of policy correction in big and small countries. The author analyses a new strategy of development adequate for Latin America with its specific geopolitical situation, demographic structure and history.


KURVATEK ◽  
2017 ◽  
Vol 1 (2) ◽  
pp. 21-31
Author(s):  
Fatimah Miharno

ABSTRACT*Zefara* Field formation Baturaja on South Sumatra Basin is a reservoir carbonate and prospective gas. Data used in this research were 3D seismik data, well logs, and geological information. According to geological report known that hidrocarbon traps in research area were limestone lithological layer as stratigraphical trap and faulted anticline as structural trap. The study restricted in effort to make a hydrocarbon accumulation and a potential carbonate reservoir area maps with seismic attribute. All of the data used in this study are 3D seismic data set, well-log data and check-shot data. The result of the analysis are compared to the result derived from log data calculation as a control analysis. Hydrocarbon prospect area generated from seismic attribute and are divided into three compartments. The seismic attribute analysis using RMS amplitude method and instantaneous frequency is very effective to determine hydrocarbon accumulation in *Zefara* field, because low amplitude from Baturaja reservoir. Low amplitude hints low AI, determined high porosity and high hydrocarbon contact (HC).  Keyword: Baturaja Formation, RMS amplitude seismic attribute, instantaneous frequency seismic attribute


Sign in / Sign up

Export Citation Format

Share Document