ANALISA POTENSI MINYAK DAN GAS BUMI DENGAN ATRIBUT SEISMIK PADA BATUAN KARBONAT LAPANGAN *ZEFARA* CEKUNGAN SUMATRA SELATAN

KURVATEK ◽  
2017 ◽  
Vol 1 (2) ◽  
pp. 21-31
Author(s):  
Fatimah Miharno

ABSTRACT*Zefara* Field formation Baturaja on South Sumatra Basin is a reservoir carbonate and prospective gas. Data used in this research were 3D seismik data, well logs, and geological information. According to geological report known that hidrocarbon traps in research area were limestone lithological layer as stratigraphical trap and faulted anticline as structural trap. The study restricted in effort to make a hydrocarbon accumulation and a potential carbonate reservoir area maps with seismic attribute. All of the data used in this study are 3D seismic data set, well-log data and check-shot data. The result of the analysis are compared to the result derived from log data calculation as a control analysis. Hydrocarbon prospect area generated from seismic attribute and are divided into three compartments. The seismic attribute analysis using RMS amplitude method and instantaneous frequency is very effective to determine hydrocarbon accumulation in *Zefara* field, because low amplitude from Baturaja reservoir. Low amplitude hints low AI, determined high porosity and high hydrocarbon contact (HC).  Keyword: Baturaja Formation, RMS amplitude seismic attribute, instantaneous frequency seismic attribute

Author(s):  
Oluwatoyin Khadijat Olaleye ◽  
Pius Adekunle Enikanselu ◽  
Michael Ayuk Ayuk

AbstractHydrocarbon accumulation and production within the Niger Delta Basin are controlled by varieties of geologic features guided by the depositional environment and tectonic history across the basin. In this study, multiple seismic attribute transforms were applied to three-dimensional (3D) seismic data obtained from “Reigh” Field, Onshore Niger Delta to delineate and characterize geologic features capable of harboring hydrocarbon and identifying hydrocarbon productivity areas within the field. Two (2) sand units were delineated from borehole log data and their corresponding horizons were mapped on seismic data, using appropriate check-shot data of the boreholes. Petrophysical summary of the sand units revealed that the area is characterized by high sand/shale ratio, effective porosity ranged from 16 to 36% and hydrocarbon saturation between 72 and 92%. By extracting attribute maps of coherence, instantaneous frequency, instantaneous amplitude and RMS amplitude, characterization of the sand units in terms of reservoir geomorphological features, facies distribution and hydrocarbon potential was achieved. Seismic attribute results revealed (1) characteristic patterns of varying frequency and amplitude areas, (2) major control of hydrocarbon accumulation being structural, in terms of fault, (3) prospective stratigraphic pinch-out, lenticular thick hydrocarbon sand, mounded sand deposit and barrier bar deposit. Seismic Attributes analysis together with seismic structural interpretation revealed prospective structurally high zones with high sand percentage, moderate thickness and high porosity anomaly at the center of the field. The integration of different seismic attribute transforms and results from the study has improved our understanding of mapped sand units and enhanced the delineation of drillable locations which are not recognized on conventional seismic interpretations.


2017 ◽  
Vol 1 (1) ◽  
pp. 72-88 ◽  
Author(s):  
Ala A. Ghafur ◽  
Dana A. Hasan

Khabbaz oilfield has a symmetrical subsurface anticline with a length of 20 km and a width of 4 km. Despite the fact that Khabbaz oilfield has a small size structure, it is known as one of the massive Oilfields in Iraq. The reservoirs of Khabbaz oilfield are produced by both Cretaceous and Tertiary rocks. The Upper Qamchuqa reservoir is the most productive reservoir of the Khabbaz oilfield with thickness ranges between 138 to 170 m. This formation is subdivided into two units, from the top is Unit A with a thickness of 67 m and from the bottom is Unit B with a thickness of 84.5 m. From a full set of log data of three wells (Kz-1, Kz-13 and Kz-14), the petrophysical properties of Khabbaz oilfield has been evaluated. The wireline log data includes gamma-ray log, sonic log, neutron log, density log and resistivity logs, both Rxo and Rt logs. This study revealed that Unit A represents the best reservoir characteristics where Unit A is subdivided into six reservoir subunits named (1-A, 2-A, 3-A, 4-A, 5-A and 6-A). They are separated by five non-reservoir subunits named 1-N, 2-N, 3-N, 4-N and 5-N. In addition to a less porous reservoir unit that is called Unit B, which has been divided into four reservoir subunits named 1-B, 2-B, 3-B and 4-B. These are separated by five non-reservoir units named 1-N, 2-N, 3-N, 4-N and 5-N. It has been recognized that both reservoir units A and B are clean formations and have minimum shale volume with high porosity in limestone and dolomite to dolomitic limestone lithology with high oil saturation and low water saturation. Based on the above reservoir characteristics it can be concluded that the reservoir units of the Khabbaz oilfield contain a massive commercial hydrocarbon accumulation.


2011 ◽  
Author(s):  
Lifeng Liu ◽  
Sam Zandong Sun ◽  
Haiyang Wang ◽  
Haijun Yang ◽  
Jianfa Han ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
pp. 122-129
Author(s):  
Kaiyuan Liu ◽  
Li Qin ◽  
Xi Zhang ◽  
Liting Liu ◽  
Furong Wu ◽  
...  

Abstract Carbonate rocks frequently exhibit less predictable seismic attribute–porosity relationships because of complex and heterogeneous pore geometry. Pore geometry plays an important role in carbonate reservoir interpretation, as it influences acoustic and elastic characters. So in porosity prediction of carbonate reservoirs, pore geometry should be considered as a factor. Thus, based on Gassmann’s equation and Eshelby–Walsh ellipsoidal inclusion theory, we introduced a parameter C to stand by pore geometry and then deduced a porosity calculating expression from compressional expression of Gassmann’s equation. In this article, we present a porosity working flow as well as calculate methods of every parameter needed in the porosity inverting equation. From well testing and field application, it proves that the high-accuracy method is suitable for carbonate reservoirs.


1992 ◽  
Vol 29 (7) ◽  
pp. 1509-1529 ◽  
Author(s):  
Tianson Yuan ◽  
G. D. Spence ◽  
R. D. Hyndman

A combined multichannel seismic reflection and refraction survey was carried out in July 1988 to study the Tertiary sedimentary basin architecture and formation and to define the crustal structure and associated plate interactions in the Queen Charlotte Islands region. Simultaneously with the collection of the multichannel reflection data, refractions and wide-angle reflections from the airgun array shots were recorded on single-channel seismographs distributed on land around Hecate Strait and Queen Charlotte Sound. For this paper a subset of the resulting data set was chosen to study the crustal structure in Queen Charlotte Sound and the nearby subduction zone.Two-dimensional ray tracing and synthetic seismogram modelling produced a velocity structure model in Queen Charlotte Sound. On a margin-parallel line, Moho depth was modelled at 27 km off southern Moresby Island but only 23 km north of Vancouver Island. Excluding the approximately 5 km of the Tertiary sediments, the crust in the latter area is only about 18 km thick, suggesting substantial crustal thinning in Queen Charlotte Sound. Such thinning of the crust supports an extensional mechanism for the origin of the sedimentary basin. Deep crustal layers with velocities of more than 7 km/s were interpreted in the southern portion of Queen Charlotte Sound and beneath the continental margin. They could represent high-velocity material emplaced in the crust from earlier subduction episodes or mafic intrusion associated with the Tertiary volcanics.Seismic velocities of both sediment and upper crust layers are lower in the southern part of Queen Charlotte Sound than in the region near Moresby Island. Well velocity logs indicate a similar velocity variation. Gravity modelling along the survey line parallel to the margin provides additional constraints on the structure. The data require lower densities in the sediment and upper crust of southern Queen Charlotte Sound. The low-velocity, low-density sediments in the south correspond to high-porosity marine sediments found in wells in that region and contrast with lower porosity nonmarine sediments in wells farther north.


2015 ◽  
Vol 8 (1) ◽  
pp. 14-18 ◽  
Author(s):  
Lei Zhang ◽  
Donghui Zhu ◽  
Xuejuan Zhang

Heavy crude oil is known as oil that is highly viscous and of a higher density than that of conventional oil. Sand reservoirs containing heavy oil generally consist of unconsolidated sediments deposited at a shallow burial depth, with high porosity and permeability. In seismic exploration, acoustic impedance inversion is a commonly used tool in reservoir prediction. However, due to the unconsolidated characteristic of heavy oil reservoirs, the wave impedance difference between heavy oil sandstones and mudstones becomes less apparent, thus limiting the ability of impedance inversion to accurately characterize the reservoir. Therefore we must expand our characterization of the target heavy oil reservoirs to include correlation analysis of different seismic attributes to the unconsolidated reservoir thickness. The results show that there has a strong correlation between the seismic attribute value of instantaneous frequency and unconsolidated reservoir thickness, more than other seismic attributes in the target strata. Thus the instantaneous frequency attribute can be used to predict qualitatively the lateral distribution of unconsolidated reservoirs, which in turn, indicates the vertical variation of thickness for the unconsolidated reservoirs. By using frequency attributes which are sensitive to unconsolidated sediments, coupling with additional geologic information, we can predict the distribution of sedimentary facies accurately in the study area, which results in a more reliable prediction for the lateral and vertical distributions of heavy oil reservoirs.


GeoArabia ◽  
1996 ◽  
Vol 1 (4) ◽  
pp. 551-566
Author(s):  
Anthony Kirkham ◽  
Mohamed Bin Juma ◽  
Tilden A.M. McKean ◽  
Anthony F. Palmer ◽  
Michael J. Smith ◽  
...  

ABSTRACT The field is a low amplitude structure with a chalky, Lower Cretaceous, Thamama reservoir characterised by a large hydrocarbon transition zone. Porosity generally decreases with depth within the trap although porosity versus depth trends are skewed by tilting. Porosity and permeability mapping was therefore achieved using templates based on seismic amplitudes. Special core analysis data were used to construct algorithms of Leverett J functions versus saturation for a variety of rock types mapped throughout the 3-D geological model of the field. The templated poroperms were then combined with capillary pressures to predict fluid saturations from these algorithms. The modelling of fluid distributions was therefore dependent upon heterogeneities imposed by the rock fabrics. Calibrating the model-predicted saturations against log-derived saturations at the wells involved regression techniques which were complicated by: notional structural tilting of the free water level, imbibition, hysteresis and permeability averaging procedures. Filtered “stick displays” proved useful in assessing the quality of the calibrations and were invaluable tools for highlighting and investigating data anomalies.


2021 ◽  
Vol 73 (01) ◽  
pp. 20-22
Author(s):  
Trent Jacobs

In the midst of an industry downturn last year, the Abu Dhabi National Oil Company (ADNOC) reached a new oil production ceiling of 4 million B/D. The UAE’s largest producer has no intentions of slowing down. By decade’s end, ADNOC expects to have raised its maximum daily output by another million barrels. To cross that milestone, the company has set its sights on mastering the tight, thin, and unconventional formations that dot the UAE’s subsurface landscape. One of the places where such developments are hoped to unfold soon is known as Field Q. Found in southeastern Abu Dhabi, Field Q sits above a tight carbonate reservoir that holds an estimated 600 million bbl of oil. But with a permeability ranging from 1 to 3 millidarcy and poor vertical communication, the reservoir and its barrels have proven difficult to cultivate economically - until recently. ADNOC has published new details of its first onshore pilot of a “fishbone stimulation” that involved using more than a hundred hollow needles to pierce as far as 40 ft into the reservoir rock. The additional drainage netted by the fishbone needles boosted production threefold in the test well, as compared with its traditionally completed neighbors on the same pad. ADNOC ran the pilot in the summer of 2019 and by the end of the year saw enough production data to launch a wider 10-well pilot that remains underway. Based on a longer-term data set from these wells, the company will decide whether to leap into a fieldwide deployment of the niche completions technology. In the meantime, the petrotechnical team in charge of the test projects have issued roundly positive reviews of the fishbone technique in two recently presented technical papers (SPE 202636; SPE 203086) from the Abu Dhabi International Petroleum Exhibition & Conference (ADIPEC). “There is a chance that the fishbone-stimulated wells can avoid the drilling of multiple wells targeting different sublayers in the same zone,” said Rama Rao Rachapudi, listing one of several of the technology’s advantages over other approaches that were considered. The senior petroleum engineer with ADNOC, who is one of several authors of the papers that cover both the drilling and completions aspects of the pilot, shared during ADIPEC that his onshore team found motivation to test the technology after bringing in a batch of dis-mal appraisal wells. The fishbone system, also known as multilateral jetting stimulation technology, has been a specialized application ever since it was introduced just over a decade ago. Underscoring the potential impact of the current round of pilots on the technology’s adoption rate, ADNOC noted there were only around 30 worldwide fishbone deployments prior to this project. Most of those have been in the Middle East’s naturally fractured and layered carbonate formations - just like those of Field Q.


Sign in / Sign up

Export Citation Format

Share Document