A New Differentiable Parameterization Based on Principal Component Analysis for the Low-Dimensional Representation of Complex Geological Models

2014 ◽  
Vol 46 (7) ◽  
pp. 775-813 ◽  
Author(s):  
Hai X. Vo ◽  
Louis J. Durlofsky
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Pei Heng Li ◽  
Taeho Lee ◽  
Hee Yong Youn

Various dimensionality reduction (DR) schemes have been developed for projecting high-dimensional data into low-dimensional representation. The existing schemes usually preserve either only the global structure or local structure of the original data, but not both. To resolve this issue, a scheme called sparse locality for principal component analysis (SLPCA) is proposed. In order to effectively consider the trade-off between the complexity and efficiency, a robust L2,p-norm-based principal component analysis (R2P-PCA) is introduced for global DR, while sparse representation-based locality preserving projection (SR-LPP) is used for local DR. Sparse representation is also employed to construct the weighted matrix of the samples. Being parameter-free, this allows the construction of an intrinsic graph more robust against the noise. In addition, simultaneous learning of projection matrix and sparse similarity matrix is possible. Experimental results demonstrate that the proposed scheme consistently outperforms the existing schemes in terms of clustering accuracy and data reconstruction error.


2011 ◽  
Vol 341-342 ◽  
pp. 790-797 ◽  
Author(s):  
Zhi Yan Xiang ◽  
Tie Yong Cao ◽  
Peng Zhang ◽  
Tao Zhu ◽  
Jing Feng Pan

In this paper, an object tracking approach is introduced for color video sequences. The approach presents the integration of color distributions and probabilistic principal component analysis (PPCA) into particle filtering framework. Color distributions are robust to partial occlusion, are rotation and scale invariant and are calculated efficiently. Principal Component Analysis (PCA) is used to update the eigenbasis and the mean, which can reflect the appearance changes of the tracked object. And a low dimensional subspace representation of PPCA efficiently adapts to these changes of appearance of the target object. At the same time, a forgetting factor is incorporated into the updating process, which can be used to economize on processing time and enhance the efficiency of object tracking. Computer simulation experiments demonstrate the effectiveness and the robustness of the proposed tracking algorithm when the target object undergoes pose and scale changes, defilade and complex background.


2014 ◽  
Vol 571-572 ◽  
pp. 753-756
Author(s):  
Wei Li Li ◽  
Xiao Qing Yin ◽  
Bin Wang ◽  
Mao Jun Zhang ◽  
Ke Tan

Denoising is an important issue for laser active image. This paper attempted to process laser active image in the low-dimensional sub-space. We adopted the principal component analysis with local pixel grouping (LPG-PCA) denoising method proposed by Zhang [1], and compared it with the conventional denoising method for laser active image, such as wavelet filtering, wavelet soft threshold filtering and median filtering. Experimental results show that the image denoised by LPG-PCA has higher BIQI value than other images, most of the speckle noise can be reduced and the detail structure information is well preserved. The low-dimensional sub-space idea is a new direction for laser active image denoising.


Computation ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 78
Author(s):  
Shengkun Xie

Feature extraction plays an important role in machine learning for signal processing, particularly for low-dimensional data visualization and predictive analytics. Data from real-world complex systems are often high-dimensional, multi-scale, and non-stationary. Extracting key features of this type of data is challenging. This work proposes a novel approach to analyze Epileptic EEG signals using both wavelet power spectra and functional principal component analysis. We focus on how the feature extraction method can help improve the separation of signals in a low-dimensional feature subspace. By transforming EEG signals into wavelet power spectra, the functionality of signals is significantly enhanced. Furthermore, the power spectra transformation makes functional principal component analysis suitable for extracting key signal features. Therefore, we refer to this approach as a double feature extraction method since both wavelet transform and functional PCA are feature extractors. To demonstrate the applicability of the proposed method, we have tested it using a set of publicly available epileptic EEGs and patient-specific, multi-channel EEG signals, for both ictal signals and pre-ictal signals. The obtained results demonstrate that combining wavelet power spectra and functional principal component analysis is promising for feature extraction of epileptic EEGs. Therefore, they can be useful in computer-based medical systems for epilepsy diagnosis and epileptic seizure detection problems.


2019 ◽  
Vol 8 (S3) ◽  
pp. 66-71
Author(s):  
T. Sudha ◽  
P. Nagendra Kumar

Data mining is one of the major areas of research. Clustering is one of the main functionalities of datamining. High dimensionality is one of the main issues of clustering and Dimensionality reduction can be used as a solution to this problem. The present work makes a comparative study of dimensionality reduction techniques such as t-distributed stochastic neighbour embedding and probabilistic principal component analysis in the context of clustering. High dimensional data have been reduced to low dimensional data using dimensionality reduction techniques such as t-distributed stochastic neighbour embedding and probabilistic principal component analysis. Cluster analysis has been performed on the high dimensional data as well as the low dimensional data sets obtained through t-distributed stochastic neighbour embedding and Probabilistic principal component analysis with varying number of clusters. Mean squared error; time and space have been considered as parameters for comparison. The results obtained show that time taken to convert the high dimensional data into low dimensional data using probabilistic principal component analysis is higher than the time taken to convert the high dimensional data into low dimensional data using t-distributed stochastic neighbour embedding.The space required by the data set reduced through Probabilistic principal component analysis is less than the storage space required by the data set reduced through t-distributed stochastic neighbour embedding.


Author(s):  
Erik Kepes ◽  
Jakub Vrabel ◽  
Pavel Pořízka ◽  
Jozef Kaiser

Emission spectra yielded by laser-induced breakdown spectroscopy (LIBS) exhibit high dimensionality, redundancy, and sparsity. The high dimensionality is often addressed by principal component analysis (PCA) which creates a low dimensional...


2020 ◽  
Vol 124 (3) ◽  
pp. 668-681
Author(s):  
Jean-Philippe Thivierge

A method termed frequency-separated principal component analysis (FS-PCA) is introduced for analyzing populations of simultaneously recorded neurons. This framework extends standard principal component analysis by extracting components of activity delimited to specific frequency bands. FS-PCA revealed that circuits of the primary visual cortex generate a broad range of components dominated by low-frequency activity. Furthermore, low-dimensional fluctuations in population activity modulated the response of individual neurons to sensory input.


2014 ◽  
Vol 1022 ◽  
pp. 304-310
Author(s):  
Jie Yao ◽  
Tao Hu ◽  
Jian Jun Yang

To meet the requirement that evidences must be independent for evidences combination in D-S evidence theory when the information processing, the dependence among evidences should be eliminated, so a new combination method of dependent evidences based on the Principal Component Analysis (PCA) is presented. The high-dimensional dependent evidences are replaced by the new low-dimensional independent evidences to reduce the dimensions following the guiding rule of PCA, and then the probability under the new evidences is calculated. The new independent evidences are combined with the combination rules of D-S evidence theory. Compared to existed methods, the dependence in initial evidences is eliminated, and the number of evidences is reduced, which leads to the simplification of the process of evidence combination. Finally, an example is employed to verify the feasibility and effectiveness of the proposed approach.


2020 ◽  
Author(s):  
Alberto García-González ◽  
Antonio Huerta ◽  
Sergio Zlotnik ◽  
Pedro Díez

Abstract Methodologies for multidimensionality reduction aim at discovering low-dimensional manifolds where data ranges. Principal Component Analysis (PCA) is very effective if data have linear structure. But fails in identifying a possible dimensionality reduction if data belong to a nonlinear low-dimensional manifold. For nonlinear dimensionality reduction, kernel Principal Component Analysis (kPCA) is appreciated because of its simplicity and ease implementation. The paper provides a concise review of PCA and kPCA main ideas, trying to collect in a single document aspects that are often dispersed. Moreover, a strategy to map back the reduced dimension into the original high dimensional space is also devised, based on the minimization of a discrepancy functional.


2010 ◽  
Vol 4 (2) ◽  
Author(s):  
Najah Hraiech ◽  
Christelle Boichon ◽  
Michel Rochette ◽  
Thierry Marchal ◽  
Marc Horner

In this paper, we describe a method for automatically building a statistical shape model by applying a morphing method and a principal component analysis (PCA) to a large database of femurs. One of the major challenges in building a shape model from a training data set of 3D objects is the determination of the correspondence between different shapes. In our work, we solve this problem by using a morphing method. The morphing method consists of deforming the same template mesh over a large database of femur geometries, which results in isotopological meshes and one to one correspondences; i.e., the resulting meshes have the same number of nodes, the same number of elements, and the same connectivity in all morphed meshes. By applying the morphing-based registration followed by PCA to a large database of femurs, we demonstrate that the method can be used to derive a low dimensional representation of the main variabilities of the femur geometry.


Sign in / Sign up

Export Citation Format

Share Document