scholarly journals The unrolled quantum group inside Lusztig’s quantum group of divided powers

2019 ◽  
Vol 109 (7) ◽  
pp. 1665-1682 ◽  
Author(s):  
Simon Lentner
Keyword(s):  
2021 ◽  
Vol 157 (7) ◽  
pp. 1507-1537
Author(s):  
Huanchen Bao ◽  
Weiqiang Wang

For quantum symmetric pairs $(\textbf {U}, \textbf {U}^\imath )$ of Kac–Moody type, we construct $\imath$ -canonical bases for the highest weight integrable $\textbf U$ -modules and their tensor products regarded as $\textbf {U}^\imath$ -modules, as well as an $\imath$ -canonical basis for the modified form of the $\imath$ -quantum group $\textbf {U}^\imath$ . A key new ingredient is a family of explicit elements called $\imath$ -divided powers, which are shown to generate the integral form of $\dot {\textbf {U}}^\imath$ . We prove a conjecture of Balagovic–Kolb, removing a major technical assumption in the theory of quantum symmetric pairs. Even for quantum symmetric pairs of finite type, our new approach simplifies and strengthens the integrality of quasi- $K$ -matrix and the constructions of $\imath$ -canonical bases, by avoiding a case-by-case rank-one analysis and removing the strong constraints on the parameters in a previous work.


Author(s):  
András Sajó ◽  
Renáta Uitz

This chapter examines the idea of separating distinct governmental functions into at least three branches (horizontal separation) as a means to safeguard individual liberty. The three branches of government have different functions: the legislature legislates, the executive branch executes the laws, and the judiciary administers justice. This corresponds to the functional distribution of essential governmental tasks and competences. The chapter explores how governments based on separated (or at least divided) powers work, in a perpetual balancing exercise as a result of the operation of checks and balances. Finally, it discusses independent agencies that are now routinely added to the old constitutional mix of powers and the problem of outsourcing public powers to private actors.


Author(s):  
Martijn Caspers

Abstract One of the main aims of this paper is to give a large class of strongly solid compact quantum groups. We do this by using quantum Markov semigroups and noncommutative Riesz transforms. We introduce a property for quantum Markov semigroups of central multipliers on a compact quantum group which we shall call ‘approximate linearity with almost commuting intertwiners’. We show that this property is stable under free products, monoidal equivalence, free wreath products and dual quantum subgroups. Examples include in particular all the (higher-dimensional) free orthogonal easy quantum groups. We then show that a compact quantum group with a quantum Markov semigroup that is approximately linear with almost commuting intertwiners satisfies the immediately gradient- ${\mathcal {S}}_2$ condition from [10] and derive strong solidity results (following [10]). Using the noncommutative Riesz transform we also show that these quantum groups have the Akemann–Ostrand property; in particular, the same strong solidity results follow again (now following [27]).


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 933
Author(s):  
Yasemen Ucan ◽  
Resat Kosker

The real forms of complex groups (or algebras) are important in physics and mathematics. The Lie group SL2,C is one of these important groups. There are real forms of the classical Lie group SL2,C and the quantum group SL2,C in the literature. Inspired by this, in our study, we obtain the real forms of the fractional supergroups shown with A3NSL2,C, for the non-trivial N = 1 and N = 2 cases, that is, the real forms of the fractional supergroups A31SL2,C and A32SL2,C.


1992 ◽  
Vol 42 (12) ◽  
pp. 1337-1344 ◽  
Author(s):  
M. Honusek ◽  
M. Vinduśka ◽  
V. Wagner

1986 ◽  
Vol 41 (2) ◽  
pp. 205-206
Author(s):  
M I Kuznetsov ◽  
S A Kirillov

Sign in / Sign up

Export Citation Format

Share Document