Alternol inhibits proliferation and induces apoptosis in mouse lymphocyte leukemia (L1210) cells

2007 ◽  
Vol 306 (1-2) ◽  
pp. 115-122 ◽  
Author(s):  
Zhao-Zhe Liu ◽  
Jin Zhu ◽  
Bo Sun ◽  
Shu Liu ◽  
Shuo Geng ◽  
...  
Keyword(s):  
2001 ◽  
Vol 79 (11) ◽  
pp. 953-958 ◽  
Author(s):  
Ellyawati Candra ◽  
Kimihiro Matsunaga ◽  
Hironori Fujiwara ◽  
Yoshihiro Mimaki ◽  
Yutaka Sashida ◽  
...  

Two steroidal saponins, tigogenin hexasaccharide-1 (TGHS-1, (25R)-5α-spirostan-3β-yl 4-O-[2-O-[3-O- (α-L-rhamnopyranosyl)-β-D-glucopyranosyl]-3-O-[4-O-(α-L-rhamnopyranosyl)-β-D-glucopyranosyl]-β-D-glucopyranosyl]- β-D-galactopyranoside) and tigogenin hexasaccharide-2 (TGHS-2, (25R)-5α-spirostan-3β-yl 4-O-[2-O-[3-O- (β-D-glucopyranosyl)-β-D-glucopyranosyl]-3-O-[4-O-(α-L-rhamnopyranosyl)-β-D-glucopyranosyl]-β-D-glucopyranosyl]- β-D-galactopyranoside), were isolated from the fresh bulbs of Camassia cusickii. In murine leukemic L1210 cells, both compounds showed cytotoxicity with an EC50 value of 0.06 µM. The morphological observation revealed that TGHS-1 and TGHS-2 induced shrinkage in cell soma and chromatin condensation, suggesting apoptotic cell death. The cell death was confirmed to be apoptosis by Annexin V binding to phosphatidylserine in the cell membrane and excluding propidium iodide. A typical apoptotic DNA ladder and the cleavage of caspase-3 were observed after treatment with TGHS-1 and TGHS-2. In the presence of both the compounds, cells with sub-G1 DNA content were detected by flow cytometric analysis, indicating that TGHS-1 and TGHS-2 (each EC50 value of 0.1 µM) are the most powerful apoptotic saponins known. These results suggest that TGHS-1 and TGHS-2 induce apoptotic cell death through caspase-3 activation.Key words: steroidal saponin, tigogenin hexasaccharide, apoptosis, DNA fragmentation, murine leukemic L1210 cells.


1998 ◽  
Vol 25 (2) ◽  
pp. 106-109 ◽  
Author(s):  
Zalkind ◽  
Calderon ◽  
Rabinowitz ◽  
Hadar ◽  
Schlesinger

1978 ◽  
Vol 26 (10) ◽  
pp. 772-781 ◽  
Author(s):  
W D Klohs ◽  
C W Goff ◽  
R J Bernacki

As the initial step toward the cytochemical localization of glycosyl-transferases in situ, biochemical determinations of these enzyme activities from onion root tips and L1210 cells were performed before and after fixation as well as in the presence of lead ions. Glycosyltransferase activity from roots fixed in buffered formaldehyde or glutaraldehyde before homogenization decreased as the concentration of the fixative or fixation time was increased. Formaldehyde fixation was less inhibitory than glutaraldehyde; 35% of the glycosyltransferase activity was retained after 30 min fixation in 2% formaldehyde while 25% of the enzyme activity remained after a similar fixation in glutaraldehyde. Substantially higher levels of L1210 cell glycosyltransferase activity were retained after a 30 min 2% formaldehyde fixation (60% sialyltransferase; 82% galactosyltransferase), but inhibition by glutaraldehyde was similar to that observed for onion root galactosyltransferase. Glycosyltransferase from formaldehyde-fixed roots was inhbited 35% by lead nitrate, but sialytransferase from formaldehyde-fixed L1210 cells was unaffected by lead ions. These findings are encouraging for further studies aimed at the development of cytochemical technique to localize glycosyltransferase in plant and animal tissues.


Neoplasma ◽  
2014 ◽  
Vol 62 (05) ◽  
pp. 553-565 ◽  
Author(s):  
A. BREIER ◽  
J. STETKA ◽  
V. BOHACOVA ◽  
D. MACEJOVA ◽  
J. BRTKO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document