steroidal saponins
Recently Published Documents


TOTAL DOCUMENTS

593
(FIVE YEARS 85)

H-INDEX

41
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Zhenpeng Xu ◽  
Yan Liu ◽  
Xiaomao Li ◽  
Siyi Wang ◽  
Peng Jiang ◽  
...  

Xanthosaponins A (1) and B (2), two unusual steroidal saponins with the 16,17-seco-cholestane new carbon skeleton were isolated from the fruits of Solanum xanthocarpum. The structures of all isolated compounds...


2021 ◽  
Vol 12 ◽  
Author(s):  
Jianghong Gao ◽  
Yehan Xu ◽  
Congkun Hua ◽  
Changfu Li ◽  
Yansheng Zhang

Fenugreek (Trigonella foenum-graecum), a pharmacologically important herb, is widely known for its antidiabetic, hypolipidemic, and anticancer effects. The medicinal properties of this herb are accredited to the presence of bioactive steroidal saponins with one or more sugar moieties linked to the C-3 OH position of disogenin or its C25-epimer yamogenin. Despite intensive studies regarding pharmacology and phytochemical profiles of this plant, enzymes and/or genes involved in synthesizing the glycosidic part of fenugreek steroidal saponins are still missing so far. This study reports the molecular cloning and functional characterization of a key sterol-specific glucosyltransferase, designated as TfS3GT2 here, from fenugreek plant. The recombinant TfS3GT2 was purified via expression in Escherichia coli, and biochemical characterization of the recombinant enzyme suggested its role in transferring a glucose group onto the C-3 hydroxyl group of diosgenin or yamogenin. The functional role of TfS3GT2 in the steroidal saponin biosynthesis was also demonstrated by suppressing the gene in the transgenic fenugreek hairy roots via the RNA interference (RNAi) approach. Down-regulation of TfS3GT2 in fenugreek generally led to reduced levels of diosgenin or yamogenin-derived steroidal saponins. Thus, Tf3SGT2 was identified as a steroid-specific UDP-glucose 3-O-glucosyltransferase that appears to be involved in steroidal saponin biosynthesis in T. foenum-graecum.


Steroids ◽  
2021 ◽  
pp. 108949
Author(s):  
Huan Yan ◽  
Wei Ni ◽  
Ling-Ling Yu ◽  
Long-Gao Xiao ◽  
Yun-Heng Ji ◽  
...  
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7240
Author(s):  
Michael Termer ◽  
Christophe Carola ◽  
Andrew Salazar ◽  
Cornelia M. Keck ◽  
Juergen Hemberger ◽  
...  

Inflammation is the body’s response to infection or tissue injury in order to restore and maintain homeostasis. Prostaglandin E2 (PGE-2) derived from arachidonic acid (AA), via up-regulation of cyclooxygenase-2 (COX-2), is a key mediator of inflammation and can also be induced by several other factors including stress, chromosomal aberration, or environmental factors. Targeting prostaglandin production by inhibiting COX-2 is hence relevant for the successful resolution of inflammation. Waltheria indica L. is a traditional medicinal plant whose extracts have demonstrated COX-2 inhibitory properties. However, the compounds responsible for the activity remained unknown. For the preparation of extracts with effective anti-inflammatory properties, characterization of these substances is vital. In this work, we aimed to address this issue by characterizing the substances responsible for the COX-2 inhibitory activity in the extracts and generating prediction models to quantify the COX-2 inhibitory activity without biological testing. For this purpose, an extract was separated into fractions by means of centrifugal partition chromatography (CPC). The inhibitory potential of the fractions and extracts against the COX-2 enzyme was determined using a fluorometric COX-2 inhibition assay. The characterizations of compounds in the fractions with the highest COX-2 inhibitory activity were conducted by high resolution mass spectrometry (HPLC-MS/MS). It was found that these fractions contain alpha-linolenic acid, linoleic acid and oleic acid, identified and reported for the first time in Waltheria indica leaf extracts. After analyzing their contents in different Waltheria indica extracts, it could be demonstrated that these fatty acids are responsible for up to 41% of the COX-2 inhibition observed with Waltheria indica extract. Additional quantification of secondary metabolites in the extract fractions revealed that substances from the group of steroidal saponins and triterpenoid saponins also contribute to the COX-2 inhibitory activity. Based on the content of compounds contributing to COX-2 inhibition, two mathematical models were successfully developed, both of which had a root mean square error (RMSE) = 1.6% COX-2 inhibitory activity, demonstrating a high correspondence between predicted versus observed values. The results of the predictive models further suggested that the compounds contribute to COX-2 inhibition in the order linoleic acid > alpha linolenic acid > steroidal saponins > triterpenoid saponins. The characterization of substances contributing to COX-2 inhibition in this study enables a more targeted development of extraction processes to obtain Waltheria indica extracts with superior anti-inflammatory properties.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2404
Author(s):  
Alexandra G. Durán ◽  
Javier Benito ◽  
Francisco A. Macías ◽  
Ana M. Simonet

Agave saponins are a valuable resource for the prospective development of new forms of agrochemicals. The extraction method was optimized and applied to 17 Agave species. Thirteen saponin fractions (SFs) were assayed on wheat etiolated coleoptiles, and analysed using UPLC-QTOF-MSE, NMR spectroscopy and the HMBC method for aglycone identification (HMAI). Six SFs were assayed on standard target species (STS) and weeds. The new extraction method reduces costs to obtain SFs with the same activity. The tested SFs assayed on etiolated wheat coleoptiles that belong to the subgenus Agave were among those with the highest activity levels. The combination of HMAI together with UPLC-MS allowed the identification of 20 aglycones in the SFs, and no isolation or hydrolysis of the saponins was required. A Principal Component Analysis (PCA) showed that for the active SFs the structural key would be the length of their sugar chain. The presence of a carbonyl group at C-12 implied an enhancement in phytotoxic activity. Six SFs were assayed on seeds, and no activity on Solanum lycopersicum (tomato) was observed; however, good activity profiles were obtained on weed E. crus-galli (IC50 < 80 ppm), better than the commercial herbicide Logran®. These findings represent a possible lead for the development of natural herbicides through the use of saponins of subgenus Agave species.


2021 ◽  
pp. 108201322110499
Author(s):  
Benjamín Vázquez-Rodríguez ◽  
Janet A. Gutiérrez-Uribe ◽  
Daniel Guajardo-Flores ◽  
Liliana Santos-Zea

Concentrated agave sap is a product with in vivo proven hypocholesterolemic and hypoglycemic activities, as well as in vitro anticancer potential. In the present work, a factorial design was used to determine the suitable drying conditions of concentrated agave by studying the effect of inlet temperature (150 °C, 180 °C and 210 °C) and the type of carrier agent (maltodextrin, hydroxypropyl methylcellulose, guar gum and xanthan gum). The response variables for each treatment were the product recovery and microencapsulated saponins. Further characterization of concentrated agave powders was performed: solubility in water, hygroscopicity, moisture content, tap density, bulk density, Carr’s index followability and morphology by scanning electron microscopy analysis. The hydroxypropyl methylcellulose proved to improve physicochemical properties and enhance product yield, using 210 °C inlet temperature and a mix of carrier agents of maltodextrin/hydroxypropyl methylcellulose/xanthan gum at 50/48.5/1.5 (w/w/w) proportion exhibited the highest saponin recovery of 53.81%. Moreover, different carrier agents in powders revealed two shapes, regular spherical shape with smooth surface and collapsed shapes. The use of polymers excipients helped to decrease the stickiness of the desired product and enhanced the powder stability and microencapsulation of the steroidal saponins.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6366
Author(s):  
Yang Liu ◽  
Pengcheng Qiu ◽  
Minchang Wang ◽  
Yunyang Lu ◽  
Hao He ◽  
...  

The genus Paris is an excellent source of steroidal saponins that exhibit various bioactivities. Paris mairei is a unique species and has been widely used as folk medicine in Southwest China for a long time. With the help of chemical methods and modern spectra analysis, five new steroidal saponins, pamaiosides A–E (1–5), along with five known steroidal saponins 6–10, were isolated from the rhizomes of Paris mairei. The cytotoxicity of all the new saponins was evaluated against human pancreatic adenocarcinoma PANC-1 and BxPC3 cell lines.


Metabolites ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 708
Author(s):  
Eirini Pegiou ◽  
Qingrui Zhu ◽  
Paraskevas Pegios ◽  
Ric C. H. De Vos ◽  
Roland Mumm ◽  
...  

Green and white asparagus are quite different crops but can be harvested from the same plant. They have distinct morphological differences due to their mode of cultivation and they are characterised by having contrasting appearance and flavour. Significant chemical differences are therefore expected. Spears from three varieties of both green and white forms, harvested in two consecutive seasons were analysed using headspace GC-MS and LC-MS with an untargeted metabolomic workflow. Mainly C5 and C8 alcohols and aldehydes, and phenolic compounds were more abundant in green spears, whereas benzenoids, monoterpenes, unsaturated aldehydes and steroidal saponins were more abundant in white ones. Previously reported key asparagus volatiles and non-volatiles were detected at similar or not significantly different levels in the two asparagus types. Spatial metabolomics revealed also that many volatiles with known positive aroma attributes were significantly more abundant in the upper parts of the spears and showed a decreasing trend towards the base. These findings provide valuable insights into the metabolome of raw asparagus, the contrasts between green and white spears as well as the different chemical distributions along the stem.


Sign in / Sign up

Export Citation Format

Share Document