The bearing strength and failure behavior of bolted e-glass/epoxy composite joints

2008 ◽  
Vol 44 (4) ◽  
pp. 397-414 ◽  
Author(s):  
Y. Pekbey
2007 ◽  
Vol 16 (3) ◽  
pp. 096369350701600 ◽  
Author(s):  
Yeliz Pekbey

The experimental investigations described in this paper were conducted in order to study the strength and failure behavior of composite plate with pin-loaded conditions. The main objective of the present paper was to investigate the influence of certain factors on the strength of the pin-loaded in E-GLASS/EPOXY composite plate with different orientations such as [0/90/±30]s and [0/90/±60]s. These factors included the preload moment (M=0, 2 Nm), the ratio of the edge distance to the pin diameter ( E/ D), and the ratio of the specimen width to the pin diameter ( W/ D). The mechanical properties and failure strengths of E-GLASS/EPOXY composite were obtained with experimental measurements. Based on experiments, the effects of laminate orientation, and preload moment on joint strengths were systematically investigated. In addition, geometrical configurations of specimens were suitably varied in order to observe all possible failure modes. A total of 150 different pin-loaded composite plate specimens were tested under static loading conditions. The specimen tested exhibited different failure modes, consisting of bearing, net-tension and shear-out, depending on the geometry adopted. Guidelines for effective laminate orientations, geometrical configurations and preload moment for mechanically pin connected E-GLASS/EPOXY composite plate were specified based on ultimate bearing strength. From the experiments, it was also found that glass-epoxy with [0/90/±30]s yielded the highest bearing strengths. Bearing strengths reached when E/D and W/D ratios were equal or greater than 4 both [0/90/±30]s and [0/90/±60]s orientations. Besides, the experimental results showed that the load-displacement curve of specimen with M=0, had the lowest the failure strength. M=2Nm preload moment, had the maximum failure load.


2020 ◽  
Vol 54 (30) ◽  
pp. 4807-4819 ◽  
Author(s):  
AR Shamaei-Kashani ◽  
MM Shokrieh

In the present research, effects of applying strain rate on the mechanical behavior of single-lap glass/CNF/epoxy composite bolted joints including, damage initiation bearing stress, 2% offset bearing strength, ultimate bearing strength, bearing chord stiffness, ultimate bearing strain, and energy absorption were studied. To this end, a comprehensive experimental program was conducted. The protruding head bolt was used, the clearance was considered to be near fit and a finger-tight bolt condition was applied to all joints. The dimensions of joints were chosen to promote the bearing failure mode based on the ASTM standard. Four types of single-lap bolted joints (SLJs) with lay-ups of [–45/0/45/90]s and [90/–452/45]s with and without CNFs were tested at strain rates in the range of 0.0048 s−1 to 0.89 s−1. Unlike the available experimental results, the results obtained by the present experiments showed that the strain rate has a significant effect on all the above-mentioned mechanical parameters of SLJs. Also, it was shown that employing CNFs improved the mechanical parameters of SLJs under quasi-static and dynamic strain rates.


Sign in / Sign up

Export Citation Format

Share Document