scholarly journals Convolutional neural networks (CNNs): concepts and applications in pharmacogenomics

Author(s):  
Joel Markus Vaz ◽  
S. Balaji

AbstractConvolutional neural networks (CNNs) have been used to extract information from various datasets of different dimensions. This approach has led to accurate interpretations in several subfields of biological research, like pharmacogenomics, addressing issues previously faced by other computational methods. With the rising attention for personalized and precision medicine, scientists and clinicians have now turned to artificial intelligence systems to provide them with solutions for therapeutics development. CNNs have already provided valuable insights into biological data transformation. Due to the rise of interest in precision and personalized medicine, in this review, we have provided a brief overview of the possibilities of implementing CNNs as an effective tool for analyzing one-dimensional biological data, such as nucleotide and protein sequences, as well as small molecular data, e.g., simplified molecular-input line-entry specification, InChI, binary fingerprints, etc., to categorize the models based on their objective and also highlight various challenges. The review is organized into specific research domains that participate in pharmacogenomics for a more comprehensive understanding. Furthermore, the future intentions of deep learning are outlined.

Genes ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 553 ◽  
Author(s):  
Pérez-Enciso ◽  
Zingaretti

Deep learning (DL) has emerged as a powerful tool to make accurate predictions from complex data such as image, text, or video. However, its ability to predict phenotypic values from molecular data is less well studied. Here, we describe the theoretical foundations of DL and provide a generic code that can be easily modified to suit specific needs. DL comprises a wide variety of algorithms which depend on numerous hyperparameters. Careful optimization of hyperparameter values is critical to avoid overfitting. Among the DL architectures currently tested in genomic prediction, convolutional neural networks (CNNs) seem more promising than multilayer perceptrons (MLPs). A limitation of DL is in interpreting the results. This may not be relevant for genomic prediction in plant or animal breeding but can be critical when deciding the genetic risk to a disease. Although DL technologies are not ”plug-and-play”, they are easily implemented using Keras and TensorFlow public software. To illustrate the principles described here, we implemented a Keras-based code in GitHub.


2019 ◽  
Author(s):  
Dan MacLean

AbstractGene Regulatory networks that control gene expression are widely studied yet the interactions that make them up are difficult to predict from high throughput data. Deep Learning methods such as convolutional neural networks can perform surprisingly good classifications on a variety of data types and the matrix-like gene expression profiles would seem to be ideal input data for deep learning approaches. In this short study I compiled training sets of expression data using the Arabidopsis AtGenExpress global stress expression data set and known transcription factor-target interactions from the Arabidopsis PLACE database. I built and optimised convolutional neural networks with a best model providing 95 % accuracy of classification on a held-out validation set. Investigation of the activations within this model revealed that classification was based on positive correlation of expression profiles in short sections. This result shows that a convolutional neural network can be used to make classifications and reveal the basis of those calssifications for gene expression data sets, indicating that a convolutional neural network is a useful and interpretable tool for exploratory classification of biological data. The final model is available for download and as a web application.


2021 ◽  
Author(s):  
Christopher Mela ◽  
Yang Liu

Abstract Background Automated segmentation of nuclei in microscopic images has been conducted to enhance throughput in pathological diagnostics and biological research. Segmentation accuracy and speed has been significantly enhanced with the advent of convolutional neural networks. A barrier in the broad application of neural networks to nuclei segmentation is the necessity to train the network using a set of application specific images and image labels. Previous works have attempted to create broadly trained networks for universal nuclei segmentation; however, such networks do not work on all imaging modalities, and best results are still commonly found when the network is retrained on user specific data. Stochastic optical reconstruction microscopy (STORM) based super-resolution fluorescence microscopy has opened a new avenue to image nuclear architecture at nanoscale resolutions. Due to the large size and discontinuous features typical of super-resolution images, automatic nuclei segmentation can be difficult. In this study, we apply commonly used networks (Mask R-CNN and UNet architectures) towards the task of segmenting super-resolution images of nuclei. First, we assess whether networks broadly trained on conventional fluorescence microscopy datasets can accurately segment super-resolution images. Then, we compare the resultant segmentations with results obtained using networks trained directly on our super-resolution data. We next attempt to optimize and compare segmentation accuracy using three different neural network architectures. Results Results indicate that super-resolution images are not broadly compatible with neural networks trained on conventional bright-field or fluorescence microscopy images. When the networks were trained on super-resolution data, however, we attained nuclei segmentation accuracies (F1-Score) in excess of 0.8, comparable to past results found when conducting nuclei segmentation on conventional fluorescence microscopy images. Overall, we achieved the best results utilizing the Mask R-CNN architecture. Conclusions We found that convolutional neural networks are powerful tools capable of accurately and quickly segmenting localization-based super-resolution microscopy images of nuclei. While broadly trained and widely applicable segmentation algorithms are desirable for quick use with minimal input, optimal results are still found when the network is both trained and tested on visually similar images. We provide a set of Colab notebooks to disseminate the software into the broad scientific community (https://github.com/YangLiuLab/Super-Resolution-Nuclei-Segmentation).


2021 ◽  
Author(s):  
Sandi Baressi Segota ◽  
Nikola Andelic ◽  
Ivan Lorencin ◽  
Jelena Musulin ◽  
Daniel Stifanic ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Christopher A. Mela ◽  
Yang Liu

Abstract Background Automated segmentation of nuclei in microscopic images has been conducted to enhance throughput in pathological diagnostics and biological research. Segmentation accuracy and speed has been significantly enhanced with the advent of convolutional neural networks. A barrier in the broad application of neural networks to nuclei segmentation is the necessity to train the network using a set of application specific images and image labels. Previous works have attempted to create broadly trained networks for universal nuclei segmentation; however, such networks do not work on all imaging modalities, and best results are still commonly found when the network is retrained on user specific data. Stochastic optical reconstruction microscopy (STORM) based super-resolution fluorescence microscopy has opened a new avenue to image nuclear architecture at nanoscale resolutions. Due to the large size and discontinuous features typical of super-resolution images, automatic nuclei segmentation can be difficult. In this study, we apply commonly used networks (Mask R-CNN and UNet architectures) towards the task of segmenting super-resolution images of nuclei. First, we assess whether networks broadly trained on conventional fluorescence microscopy datasets can accurately segment super-resolution images. Then, we compare the resultant segmentations with results obtained using networks trained directly on our super-resolution data. We next attempt to optimize and compare segmentation accuracy using three different neural network architectures. Results Results indicate that super-resolution images are not broadly compatible with neural networks trained on conventional bright-field or fluorescence microscopy images. When the networks were trained on super-resolution data, however, we attained nuclei segmentation accuracies (F1-Score) in excess of 0.8, comparable to past results found when conducting nuclei segmentation on conventional fluorescence microscopy images. Overall, we achieved the best results utilizing the Mask R-CNN architecture. Conclusions We found that convolutional neural networks are powerful tools capable of accurately and quickly segmenting localization-based super-resolution microscopy images of nuclei. While broadly trained and widely applicable segmentation algorithms are desirable for quick use with minimal input, optimal results are still found when the network is both trained and tested on visually similar images. We provide a set of Colab notebooks to disseminate the software into the broad scientific community (https://github.com/YangLiuLab/Super-Resolution-Nuclei-Segmentation).


2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


Sign in / Sign up

Export Citation Format

Share Document