Toward the identification of genes underlying maize QTLs for lignin content, focusing on colocalizations with lignin biosynthetic genes and their regulatory MYB and NAC transcription factors

2015 ◽  
Vol 35 (3) ◽  
Author(s):  
Yves Barrière ◽  
Audrey Courtial ◽  
Marçal Soler ◽  
Jacqueline Grima-Pettenati
2021 ◽  
Vol 12 ◽  
Author(s):  
YiMing Sun ◽  
Chunxue Jiang ◽  
Ruiqi Jiang ◽  
Fengying Wang ◽  
Zhenguo Zhang ◽  
...  

Wood formation is a complicated process under the control of a large set of transcription factors. NAC transcription factors are considered “master switches” in this process. However, few NAC members have been cloned and characterized in Eucalyptus, which is one of the most economically important woody plants. Here, we reported an NAC transcription factor from Eucalyptus grandis, EgNAC141, which has no Arabidopsis orthologs associated with xylogenesis-related processes. EgNAC141 was predominantly expressed in lignin-rich tissues, such as the stem and xylem. Overexpression of EgNAC141 in Arabidopsis resulted in stronger lignification, larger xylem, and higher lignin content. The expression of lignin biosynthetic genes in transgenic plants was significantly higher compared with wild-type plants. The transient expression of EgNAC141 activated the expression of Arabidopsis lignin biosynthetic genes in a dual-luciferase assay. Overall, these results showed that EgNAC141 is a positive regulator of lignin biosynthesis and may help us understand the regulatory mechanism of wood formation.


Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiang Zhang ◽  
Yan Long ◽  
Jingjing Huang ◽  
Jixing Xia

Abstract Background Salt stress threatens crop yields all over the world. Many NAC transcription factors have been reported to be involved in different abiotic stress responses, but it remains unclear how loss of these transcription factors alters the transcriptomes of plants. Previous reports have demonstrated that overexpression of OsNAC45 enhances salt and drought tolerance in rice, and that OsNAC45 may regulate the expression of two specific genes, OsPM1 and OsLEA3–1. Results Here, we found that ABA repressed, and NaCl promoted, the expression of OsNAC45 in roots. Immunostaining showed that OsNAC45 was localized in all root cells and was mainly expressed in the stele. Loss of OsNAC45 decreased the sensitivity of rice plants to ABA and over-expressing this gene had the opposite effect, which demonstrated that OsNAC45 played an important role during ABA signal responses. Knockout of OsNAC45 also resulted in more ROS accumulation in roots and increased sensitivity of rice to salt stress. Transcriptome sequencing assay found that thousands of genes were differently expressed in OsNAC45-knockout plants. Most of the down-regulated genes participated in plant stress responses. Quantitative real time RT-PCR suggested that seven genes may be regulated by OsNAC45 including OsCYP89G1, OsDREB1F, OsEREBP2, OsERF104, OsPM1, OsSAMDC2, and OsSIK1. Conclusions These results indicate that OsNAC45 plays vital roles in ABA signal responses and salt tolerance in rice. Further characterization of this gene may help us understand ABA signal pathway and breed rice plants that are more tolerant to salt stress.


Science ◽  
2014 ◽  
Vol 343 (6178) ◽  
pp. 1505-1508 ◽  
Author(s):  
B. Xu ◽  
M. Ohtani ◽  
M. Yamaguchi ◽  
K. Toyooka ◽  
M. Wakazaki ◽  
...  

2016 ◽  
Vol 7 ◽  
Author(s):  
Iny Elizebeth Mathew ◽  
Sweta Das ◽  
Arunima Mahto ◽  
Pinky Agarwal

2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Mudassar Ahmad ◽  
Xinhui Yan ◽  
Jianzhao Li ◽  
Qinsong Yang ◽  
Wajeeha Jamil ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Nithiwat Suntichaikamolkul ◽  
Kittitya Tantisuwanichkul ◽  
Pinidphon Prombutara ◽  
Khwanlada Kobtrakul ◽  
Julie Zumsteg ◽  
...  

Abstract Background Pueraria candollei var. mirifica, a Thai medicinal plant used traditionally as a rejuvenating herb, is known as a rich source of phytoestrogens, including isoflavonoids and the highly estrogenic miroestrol and deoxymiroestrol. Although these active constituents in P. candollei var. mirifica have been known for some time, actual knowledge regarding their biosynthetic genes remains unknown. Results Miroestrol biosynthesis was reconsidered and the most plausible mechanism starting from the isoflavonoid daidzein was proposed. A de novo transcriptome analysis was conducted using combined P. candollei var. mirifica tissues of young leaves, mature leaves, tuberous cortices, and cortex-excised tubers. A total of 166,923 contigs was assembled for functional annotation using protein databases and as a library for identification of genes that are potentially involved in the biosynthesis of isoflavonoids and miroestrol. Twenty-one differentially expressed genes from four separate libraries were identified as candidates involved in these biosynthetic pathways, and their respective expressions were validated by quantitative real-time reverse transcription polymerase chain reaction. Notably, isoflavonoid and miroestrol profiling generated by LC-MS/MS was positively correlated with expression levels of isoflavonoid biosynthetic genes across the four types of tissues. Moreover, we identified R2R3 MYB transcription factors that may be involved in the regulation of isoflavonoid biosynthesis in P. candollei var. mirifica. To confirm the function of a key-isoflavone biosynthetic gene, P. candollei var. mirifica isoflavone synthase identified in our library was transiently co-expressed with an Arabidopsis MYB12 transcription factor (AtMYB12) in Nicotiana benthamiana leaves. Remarkably, the combined expression of these proteins led to the production of the isoflavone genistein. Conclusions Our results provide compelling evidence regarding the integration of transcriptome and metabolome as a powerful tool for identifying biosynthetic genes and transcription factors possibly involved in the isoflavonoid and miroestrol biosyntheses in P. candollei var. mirifica.


Sign in / Sign up

Export Citation Format

Share Document