Effect of quenching method on the wear and corrosion resistance of stainless steel AISI 420 (TYPE 30Kh13)

2013 ◽  
Vol 54 (11-12) ◽  
pp. 644-647 ◽  
Author(s):  
R. Sola ◽  
R. Giovanardi ◽  
P. Veronesi ◽  
G. Poli
Alloy Digest ◽  
2000 ◽  
Vol 49 (8) ◽  

Abstract Allegheny Ludlum Type 420 is a hardenable, straight-chromium stainless steel with wear and corrosion resistance. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: SS-801. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
2005 ◽  
Vol 54 (4) ◽  

Abstract Nirosta 4031 (Type 420) is a martensitic grade of stainless steel that is heat treatable and has wear and corrosion resistance. It is predominately used in the quenched-and-tempered condition. Typical applications are blades and shears for all types of cutting. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SS-925. Producer or source: ThyssenKrupp Nirosta GmbH.


Alloy Digest ◽  
1983 ◽  
Vol 32 (11) ◽  

Abstract AL TECH MIAMI is both a hardenable stainless steel (AISI Type 420) and a tool steel for making molds for plastic. A major requirement for plastic mold steel is corrosion resistance. Certain plastics, such as poly-vinyl chlorides, are very corrosive and stored molds often rust from sweating water lines and/or humid environments. AL TECH MIAMI has good resistance to wear. It is melted and AOD refined to assure the mold-maker of cleanliness and freedom from internal imperfections. It provides exceptionally good polishability for lens-quality molds. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: SS-435. Producer or source: AL Tech Specialty Steel Corporation.


2013 ◽  
Vol 845 ◽  
pp. 765-769 ◽  
Author(s):  
Guilherme Cortelini Rosa ◽  
André J. Souza ◽  
Flávio J. Lorini

Machining performance consists to associate the optimal process and cutting parameters and maximum material removal rate with the most appropriate tool while controlling the machined surface state. This work verifies the influence of standard and wiper cutting tools on generated surface roughness and residual stress in dry finish turning operation of the martensitic stainless steel AISI 420 in a comparative way. Tests are conducted for different combinations of tool nose geometry, feed rate and depth of cut being analyzed through the Design of Experiments regarding to surface roughness parametersRaandRt. Moreover, the formation of residual stresses in the material (using the technique of X-Ray Diffraction) was evaluated after the machining process for these two cutting geometries and thereafter the result was compared between them. An ANOVA is performed to clarify the influence of cutting parameters on generated surface roughness, which outputs inform that cutting tool geometry is the most influent onRaandRt. It is concluded that analyzed wiper inserts present low performance for low feed rates. Regarding the analysis of the residual stresses it can be stated that for standard and wiper tools the values collected show that for finish turning the compression stresses were found. It can be observed that the greatest amount of compressive stress has been found for the standard tool.


2013 ◽  
Vol 699 ◽  
pp. 596-605 ◽  
Author(s):  
Aleksey V. Nikiforov ◽  
Irina M. Petrushina ◽  
Jens Oluf Jensen ◽  
Niels J. Bjerrum

Different corrosion resistant stainless steels, nickel-based alloys, pure nickel, Ta-coated stainless steel (AISI 316L), niobium, platinum and gold rods were evaluated as possible materials for use in the intermediate temperature (200-400 °C) acidic water electrolysers. The corrosion resistance was measured under simulated conditions (molten KH2PO4) corresponding to the proton-conducting solid acids or transition metal phosphates as electrolytes. It was shown that, unlike at temperatures below 200 °C, gold is unstable with respect to corrosion in molten KH2PO4. Platinum demonstrated high corrosion resistance and the anodic and cathodic limits were for the first time found for the electrolyte. Nickel, niobium, Inconel®625, Hastelloy®C-276 and Ta-coated stainless steel (AISI 316L) demonstrated high corrosion stability and can be recommended as construction materials for bipolar plates.


Sign in / Sign up

Export Citation Format

Share Document