Smoky vehicle detection based on multi-feature fusion and ensemble neural networks

2018 ◽  
Vol 77 (24) ◽  
pp. 32153-32177 ◽  
Author(s):  
Huanjie Tao ◽  
Xiaobo Lu
PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250782
Author(s):  
Bin Wang ◽  
Bin Xu

With the rapid development of Unmanned Aerial Vehicles, vehicle detection in aerial images plays an important role in different applications. Comparing with general object detection problems, vehicle detection in aerial images is still a challenging research topic since it is plagued by various unique factors, e.g. different camera angle, small vehicle size and complex background. In this paper, a Feature Fusion Deep-Projection Convolution Neural Network is proposed to enhance the ability to detect small vehicles in aerial images. The backbone of the proposed framework utilizes a novel residual block named stepwise res-block to explore high-level semantic features as well as conserve low-level detail features at the same time. A specially designed feature fusion module is adopted in the proposed framework to further balance the features obtained from different levels of the backbone. A deep-projection deconvolution module is used to minimize the impact of the information contamination introduced by down-sampling/up-sampling processes. The proposed framework has been evaluated by UCAS-AOD, VEDAI, and DOTA datasets. According to the evaluation results, the proposed framework outperforms other state-of-the-art vehicle detection algorithms for aerial images.


2021 ◽  
Vol 13 (3) ◽  
pp. 809-820
Author(s):  
V. Sowmya ◽  
R. Radha

Vehicle detection and recognition require demanding advanced computational intelligence and resources in a real-time traffic surveillance system for effective traffic management of all possible contingencies. One of the focus areas of deep intelligent systems is to facilitate vehicle detection and recognition techniques for robust traffic management of heavy vehicles. The following are such sophisticated mechanisms: Support Vector Machine (SVM), Convolutional Neural Networks (CNN), Regional Convolutional Neural Networks (R-CNN), You Only Look Once (YOLO) model, etcetera. Accordingly, it is pivotal to choose the precise algorithm for vehicle detection and recognition, which also addresses the real-time environment. In this study, a comparison of deep learning algorithms, such as the Faster R-CNN, YOLOv2, YOLOv3, and YOLOv4, are focused on diverse aspects of the features. Two entities for transport heavy vehicles, the buses and trucks, constitute detection and recognition elements in this proposed work. The mechanics of data augmentation and transfer-learning is implemented in the model; to build, execute, train, and test for detection and recognition to avoid over-fitting and improve speed and accuracy. Extensive empirical evaluation is conducted on two standard datasets such as COCO and PASCAL VOC 2007. Finally, comparative results and analyses are presented based on real-time.


Sign in / Sign up

Export Citation Format

Share Document