Study on Subway passenger flow prediction based on deep recurrent neural network

Author(s):  
Deqiang Liu ◽  
Zhong Wu ◽  
Shaorong Sun
2020 ◽  
Author(s):  
Ramachandro Majji

BACKGROUND Cancer is one of the deadly diseases prevailing worldwide and the patients with cancer are rescued only when the cancer is detected at the very early stage. Early detection of cancer is essential as, in the final stage, the chance of survival is limited. The symptoms of cancers are rigorous and therefore, all the symptoms should be studied properly before the diagnosis. OBJECTIVE Propose an automatic prediction system for classifying cancer to malignant or benign. METHODS This paper introduces the novel strategy based on the JayaAnt lion optimization-based Deep recurrent neural network (JayaALO-based DeepRNN) for cancer classification. The steps followed in the developed model are data normalization, data transformation, feature dimension detection, and classification. The first step is the data normalization. The goal of data normalization is to eliminate data redundancy and to mitigate the storage of objects in a relational database that maintains the same information in several places. After that, the data transformation is carried out based on log transformation that generates the patterns using more interpretable and helps fulfill the supposition, and to reduce skew. Also, the non-negative matrix factorization is employed for reducing the feature dimension. Finally, the proposed JayaALO-based DeepRNN method effectively classifies cancer-based on the reduced dimension features to produce a satisfactory result. RESULTS The proposed JayaALO-based DeepRNN showed improved results with maximal accuracy of 95.97%, the maximal sensitivity of 95.95%, and the maximal specificity of 96.96%. CONCLUSIONS The resulted output of the proposed JayaALO-based DeepRNN is used for cancer classification.


2019 ◽  
Vol 236 ◽  
pp. 700-710 ◽  
Author(s):  
Cheng Fan ◽  
Jiayuan Wang ◽  
Wenjie Gang ◽  
Shenghan Li

2012 ◽  
Vol 605-607 ◽  
pp. 2366-2369 ◽  
Author(s):  
Yao Wang ◽  
Dan Zheng ◽  
Shi Min Luo ◽  
Dong Ming Zhan ◽  
Peng Nie

Based on analyzing the principle of BP neural network and time sequence characteristics of railway passenger flow, the forecast model of railway short-term passenger flow based on BP neural network was established. This paper mainly researches on fluctuation characteristics and short-time forecast of holiday passenger flow. Through analysis of passenger flow and then be used in passenger flow forecasting in order to guide the transport organization program especially the train plan of extra passenger train. And the result shows the forecast model based on BP neural network has a good effect on railway passenger flow prediction.


Sign in / Sign up

Export Citation Format

Share Document