Iris segmentation for non-ideal Iris biometric systems

Author(s):  
Farmanullah Jan ◽  
Saleh Alrashed ◽  
Nasro Min-Allah
2015 ◽  
Vol 74 (3) ◽  
Author(s):  
Nasharuddin Zainal ◽  
Abduljalil Radman ◽  
Mahamod Ismail ◽  
Md Jan Nordin

Iris recognition has been regarded as one of the most reliable biometric systems over the past years. Previous studies have shown that the performance of iris recognition systems highly dependent on the performance of their segmentation algorithms. Iris segmentation is the process to isolate the iris region from the surrounded structures of the eye image. However, several iris segmentation algorithms have been developed in the literature, but their segmentation and recognition accuracies drastically degrade with non-ideal iris images acquired in less constrained conditions. Thus, it is crucial to develop a new iris segmentation method to improve iris recognition using non-ideal images. Hence, the objective of this paper is an iris segmentation method on the basis of optimization to isolate the iris region from non-ideal iris images such those affected by reflections, blurred boundaries, eyelids occlusion, and gaze-deviation. Experimental results on the off axis/angle West Virginia University (WVU) iris database demonstrated the superiority of the developed method over state-of-the-art iris segmentation methods considered in this paper. The performance of an iris recognition algorithm based on the developed iris segmentation method was observed to be improved.  


Author(s):  
Chunhui GAO ◽  
Guorui FENG ◽  
Yanli REN ◽  
Lizhuang LIU

Author(s):  
V. Jagan Naveen ◽  
K. Krishna Kishore ◽  
P. Rajesh Kumar

In the modern world, human recognition systems play an important role to   improve security by reducing chances of evasion. Human ear is used for person identification .In the Empirical study on research on human ear, 10000 images are taken to find the uniqueness of the ear. Ear based system is one of the few biometric systems which can provides stable characteristics over the age. In this paper, ear images are taken from mathematical analysis of images (AMI) ear data base and the analysis is done on ear pattern recognition based on the Expectation maximization algorithm and k means algorithm.  Pattern of ears affected with different types of noises are recognized based on Principle component analysis (PCA) algorithm.


2005 ◽  
Author(s):  
Bradford L. Bonney
Keyword(s):  

2021 ◽  
pp. 1-13
Author(s):  
Shikhar Tyagi ◽  
Bhavya Chawla ◽  
Rupav Jain ◽  
Smriti Srivastava

Single biometric modalities like facial features and vein patterns despite being reliable characteristics show limitations that restrict them from offering high performance and robustness. Multimodal biometric systems have gained interest due to their ability to overcome the inherent limitations of the underlying single biometric modalities and generally have been shown to improve the overall performance for identification and recognition purposes. This paper proposes highly accurate and robust multimodal biometric identification as well as recognition systems based on fusion of face and finger vein modalities. The feature extraction for both face and finger vein is carried out by exploiting deep convolutional neural networks. The fusion process involves combining the extracted relevant features from the two modalities at score level. The experimental results over all considered public databases show a significant improvement in terms of identification and recognition accuracy as well as equal error rates.


Sign in / Sign up

Export Citation Format

Share Document