The role of cutaneous afferents in controlling locomotion evoked by epidural stimulation of the spinal cord in decerebrate cats

2008 ◽  
Vol 38 (7) ◽  
pp. 695-701 ◽  
Author(s):  
I. Yu. Dorofeev ◽  
V. D. Avelev ◽  
N. A. Shcherbakova ◽  
Yu. P. Gerasimenko
2005 ◽  
Vol 35 (3) ◽  
pp. 291-298 ◽  
Author(s):  
Yu. P. Gerasimenko ◽  
I. A. Lavrov ◽  
I. N. Bogacheva ◽  
N. A. Shcherbakova ◽  
V. I. Kucher ◽  
...  

1960 ◽  
Vol 198 (3) ◽  
pp. 669-676 ◽  
Author(s):  
Deane N. Calvert ◽  
Theodore M. Brody

An hypothesis is proposed which states that the characteristic hepatic changes seen after the administration of carbon tetrachloride are the result of stimulation of central sympathetic areas which produce a massive discharge of the peripheral sympathetic nervous system. Stimulation of the sympathetic supply to the blood vessels of the liver results in restriction of blood flow in the liver, leading to anoxia and the characteristic necrosis around the central vein of the hepatic lobule. Similarly the discharge causes the release of unesterified fatty acids from the peripheral fat depots and the consequent deposition of lipid in the liver. This hypothesis is based upon experimental evidence using the following physiologic and pharmacologic maneuvers: adrenergic blocking agents, pretreatment with reserpine, adrenalectomy and section of the spinal cord—all are effective to a greater or lesser extent in preventing the changes characteristically seen in oxidative phosphorylation of the liver mitochondria, activation of a Mg-dependent ATPase and deposition of lipid in the liver. Transection of the spinal cord is the most effective treatment and prevents entirely the characteristic changes seen in the above-mentioned functions.


1990 ◽  
Vol 64 (4) ◽  
pp. 1134-1148 ◽  
Author(s):  
S. N. Currie ◽  
P. S. Stein

1. We demonstrated multisecond increases in the excitability of the rostral-scratch reflex in the turtle by electrically stimulating the shell at sites within the rostral-scratch receptive field. To examine the cellular mechanisms for these multisecond increases in scratch excitability, we recorded from single cutaneous afferents and sensory interneurons that responded to stimulation of the shell within the rostral-scratch receptive field. A single segment of the midbody spinal cord (D4, the 4th postcervical segment) was isolated in situ by transecting the spinal cord at the segment's anterior and posterior borders. The isolated segment was left attached to its peripheral nerve that innervates part of the rostral-scratch receptive field. A microsuction electrode (4-5 microns ID) was used to record extracellularly from the descending axons of cutaneous afferents and interneurons in the spinal white matter at the posterior end of the D4 segment. 2. The turtle shell is innervated by slowly and rapidly adapting cutaneous afferents. All cutaneous afferents responded to a single electrical stimulus to the shell with a single action potential. Maintained mechanical stimulation applied to the receptive field of some slowly adapting afferents produced several seconds of afterdischarge at stimulus offset. We refer to the cutaneous afferent afterdischarge caused by mechanical stimulation of the shell as "peripheral afterdischarge." 3. Within the D4 spinal segment there were some interneurons that responded to a brief mechanical stimulus within their receptive fields on the shell with short afterdischarge and others that responded with long afterdischarge. Short-afterdischarge interneurons responded to a single electrical pulse to a site in their receptive fields either with a brief train of action potentials or with a single action potential. Long-afterdischarge interneurons responded to a single electrical shell stimulus with up to 30 s of afterdischarge. Long-afterdischarge interneurons also exhibited strong temporal summation in response to a pair of electrical shell stimuli delivered up to several seconds apart. Because all cutaneous afferents responded to an electrical shell stimulus with a single action potential, we conclude that electrically evoked afterdischarge in interneurons was produced by neural mechanisms in the spinal cord; we refer to this type of afterdischarge as "central afterdischarge." 4. These results demonstrate that neural mechanisms for long-lasting excitability changes in response to cutaneous stimulation reside in a single segment of the spinal cord. Cutaneous interneurons with long afterdischarge may serve as cellular loci for multise


2020 ◽  
Vol 598 (16) ◽  
pp. 3459-3483 ◽  
Author(s):  
Pavel E. Musienko ◽  
Vladimir F. Lyalka ◽  
Oleg V. Gorskii ◽  
Natalia Merkulyeva ◽  
Yuri P. Gerasimenko ◽  
...  

2009 ◽  
Vol 102 (3) ◽  
pp. 1560-1576 ◽  
Author(s):  
Brian R. Noga ◽  
Dawn M. G. Johnson ◽  
Mirta I. Riesgo ◽  
Alberto Pinzon

Monoamines are strong modulators and/or activators of spinal locomotor networks. Thus monoaminergic fibers likely contact neurons involved in generating locomotion. The aim of the present study was to investigate the serotonergic innervation of locomotor-activated neurons within the thoraco-lumbar spinal cord following induction of hindlimb locomotion. This was determined by immunohistochemical co-localization of serotonin (5-HT) fibers or 5-HT7/5-HT2A/5-HT1A receptors with cells expressing the activity-dependent marker c-fos. Experiments were performed on paralyzed, decerebrate cats in which locomotion was induced by electrical stimulation of the mesencephalic locomotor region. Abundant c-fos immunoreactive cells were observed in laminae VII and VIII throughout the thoraco-lumbar segments of locomotor animals. Control sections from the same segments showed significantly fewer labeled neurons, mostly within the dorsal horn. Multiple serotonergic boutons were found in close apposition to the majority (80–100%) of locomotor cells, which were most abundant in lumbar segments L3–7. 5-HT7 receptor immunoreactivity was observed on cells across the thoraco-lumbar segments (T7–L7), in a dorsoventral gradient. Most locomotor-activated cells co-localized with 5-HT7, 5-HT2A, and 5-HT1A receptors, with largest numbers in laminae VII and VIII. Co-localization of c-fos and 5-HT7 receptor was highest in the L5–L7 segments (>90%) and decreased rostrally (to ∼50%) due to the absence of receptors on cells within the intermediolateral nucleus. In contrast, 60–80 and 35–80% of c-fos immunoreactive cells stained positive for 5-HT2A and 5-HT1A receptors, respectively, with no rostrocaudal gradient. These results indicate that serotonergic modulation of locomotion likely involves 5-HT7/5-HT2A/5-HT1A receptors located on the soma and proximal dendrites of serotonergic-innervated locomotor-activated neurons within laminae VII and VIII of thoraco-lumbar segments.


1978 ◽  
Vol 48 (3) ◽  
pp. 323-328 ◽  
Author(s):  
Bruno J. Urban ◽  
Blaine S. Nashold

✓ Percutaneous epidural stimulation of the spinal cord was carried out in 20 patients with intractable pain. The procedure proved simple, and no major complications were encountered. The long-term results were comparable to the results obtained after a dorsal column stimulator implant by laminectomy. The percutaneous technique allowed extended trial stimulation without committing the patient to a major operation. Those patients in whom stimulation did not alleviate pain could be identified during a 2-week observation period, and the system could be removed easily. Seven patients were placed on chronic autostimulation and only one of those failed to experience continuing pain relief throughout the follow-up time of up to 2 years. It is concluded that percutaneous epidural stimulation constitutes a valid alternative to dorsal column stimulator implantation.


1993 ◽  
Vol 26 (2) ◽  
pp. 333
Author(s):  
Sang Chul Lee ◽  
Ik Hyun Choe ◽  
Sang Min Lee ◽  
Hae Kyoung Kim ◽  
Yong Lak Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document