Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery

2010 ◽  
Vol 99 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Koichi Mitsuya ◽  
Yoko Nakasu ◽  
Satoshi Horiguchi ◽  
Hideyuki Harada ◽  
Tetsuo Nishimura ◽  
...  
Author(s):  
I. Shirazu ◽  
Y. B Mensah ◽  
T. A Sackey ◽  
M. Boadu ◽  
E K Eduful ◽  
...  

Physical imaging technique described as Diffusion Weighted-Magnetic Resonance Imaging (DW-MRI) is based on classically principle of Brownian motion, where the molecules are thermal agitated and is highly influenced by the cellular availability of water. The aim of this study is to discuss the use of DW-MRI as a cancer diagnostic application tool using the basic physics principles as versus other available procedures and modalities in terms of accuracy and acceptability. Based on extravascular diffusion measurements where the measured signal is related to tissue cellularity, tissue organization and extracellular space tortuosity and on the intactness of cellular membranes that are intrinsically hydrophobic. The methodology involve the application of DW-MRI procedure, to qualitatively and quantitatively access DW-MR images to diagnose brain tumors, prostate and other organ cancers compared to other imaging modalities including other MRI procedures. It also include safety assessment and other consideration before, during and after imaging with MRI as compare to other radiological modalities. The results of the data of ten (10) MRI centers and 112 DW-MRI images and 99 other procedure and modalities were analysed, 34% were prostate cases, 27% were brain cases and 39% formed all other cases. In addition, DW-MRI compare to other single imaging procedure formed 53% of all diagnostic procedure that had 87% accurate predictability of prostate and brain cases. It can therefore concluded that DW-MRI is the best single imaging procedure that can be used to diagnose prostate cancers and brain tumors. It has a major advantage of non-ionizing radiation technique, with multiple planes image acquisitions, together with superior soft tissue contrast. In addition its perfusion allow for precise tissue characterization rather than merely 'macroscopic' imaging and superior visualization of both active parts of the brain during certain activities and understanding of the underlying networks. However, there are two outstanding challenges of DW-MRI scans in Ghana: it is expensive as compared to other modalities and not safe for patients with some metal implants. Despite these challenges, its advantages override its disadvantages and therefore it is recommended to clinicians as the first diagnostic tool to use in prostate cancer and brain tumor diagnoses.


Neurosurgery ◽  
1990 ◽  
Vol 27 (4) ◽  
pp. 640-643 ◽  
Author(s):  
Osamu Tachibana ◽  
Narihito Yamaguchi ◽  
Tetsumori Yamashima ◽  
Junkoh Yamashita

Abstract A 26-year-old woman was treated for a prolactin secreting pituitary adenoma by surgery and radiotherapy (5860 rads). Fourteen months later, she developed right hemiparesis and dysarthria. A T1-weighted magnetic resonance imaging scan using gadolinium contrast showed a small, enhanced lesion in the upper pons. Seven months later, she had a sudden onset of loss of vision, and radiation optic neuropathy was diagnosed. A T1-weighted magnetic resonance imaging scan showed widespread gadolinium-enhanced lesions in the optic chiasm, optic tract, and hypothalamus. Magnetic resonance imaging is indispensable for the early diagnosis of radiation necrosis, which is not visualized by radiography or computed tomography.


Neurosurgery ◽  
2008 ◽  
Vol 63 (5) ◽  
pp. 898-904 ◽  
Author(s):  
Ivan M. Dequesada ◽  
Ronald G. Quisling ◽  
Anthony Yachnis ◽  
William A. Friedman

Abstract OBJECTIVE Stereotactic radiosurgery is a commonly used treatment method in the management of metastatic brain tumors. When lesions enlarge after radiosurgery, it may represent tumor regrowth, radiation necrosis, or both. The purpose of this study was to determine whether standard magnetic resonance imaging (MRI) sequences could reliably distinguish between these pathological possibilities. METHODS A total of 619 patients, reported in a previous study, were treated with radiosurgery for metastatic brain tumors. Of those patients, 59 underwent subsequent craniotomy for symptomatic lesion enlargement. Of those 59 patients, 32 had complete preoperative MRI studies as well as surgical pathology reports. The following MRI features were analyzed in this subset of patients: arteriovenous shunting, gyriform lesion or edema distribution, perilesional edema, cyst formation, and pattern of enhancement. A novel radiographic feature, called the lesion quotient, which is the ratio of the nodule as seen on T2 imaging to the total enhancing area on T1 imaging, was also analyzed. RESULTS Sensitivity, specificity, and predictive values were computed for each radiographic characteristic. Lesions containing only radiation necrosis never displayed gyriform lesion/edema distribution, marginal enhancement, or solid enhancement. All lesions exhibited perilesional edema. A lesion quotient of 0.6 or greater was seen in all cases of recurrent tumor, a lesion quotient greater than 0.3 was seen in 19 of 20 cases of combination pathology, and a lesion quotient of 0.3 or less was seen in 4 of 5 cases of radiation necrosis. The lesion quotient correlated with the percentage of tumor identified on pathological specimens. CONCLUSION The lesion quotient appears to reliably identify pure radiation necrosis on standard sequence MRI. Other examined radiographic features, including arteriovenous shunting, gyriform lesion/edema distribution, enhancement pattern, and cyst formation, achieved 80% or greater predictive value but had either low sensitivity or low specificity.


Neurosurgery ◽  
2014 ◽  
Vol 74 (6) ◽  
pp. 658-667 ◽  
Author(s):  
Malay S. Rao ◽  
Eric L. Hargreaves ◽  
Atif J. Khan ◽  
Bruce G. Haffty ◽  
Shabbar F. Danish

ABSTRACT BACKGROUND: Enhancing lesions that progress after stereotactic radiosurgery are often tumor recurrence or radiation necrosis. Magnetic resonance-guided laser-induced thermal therapy (LITT) is currently being explored for minimally invasive treatment of intracranial neoplasms. OBJECTIVE: To report the largest series to date of local control with LITT for the treatment of recurrent enhancing lesions after stereotactic radiosurgery for brain metastases. METHODS: Patients with recurrent metastatic intracranial tumors or radiation necrosis who had previously undergone radiosurgery and had a Karnofsky performance status of >70 were eligible for LITT. Sixteen patients underwent a total of 17 procedures. The primary end point was local control using magnetic resonance imaging scans at intervals of >4 weeks. Radiographic outcomes were followed up prospectively until death or local recurrence (defined as >25% increase in volume compared with the 24-hour postprocedural scan). RESULTS: Fifteen patients (age, 46-82 years) were available for follow-up. Primary tumor histology was non–small-cell lung cancer (n = 12) and adenocarcinoma (n = 3). On average, the lesion size measured 3.66 cm3 (range, 0.46-25.45 cm3); there were 3.3 ablations per treatment (range, 2-6), with 7.73-cm depth to target (range, 5.5-14.1 cm), ablation dose of 9.85 W (range, 8.2-12.0 W), and total ablation time of 7.43 minutes (range, 2-15 minutes). At a median follow-up of 24 weeks (range, 4-84 weeks), local control was 75.8% (13 of 15 lesions), median progression-free survival was 37 weeks, and overall survival was 57% (8 of 14 patients). Two patients experience recurrence at 6 and 18 weeks after the procedure. Five patients died of extracranial disease progression; 1 patient died of neurological progression elsewhere in the brain. CONCLUSION: Magnetic resonance imaging-guided LITT is a well-tolerated procedure and may be effective in treating tumor recurrence/radiation necrosis.


2018 ◽  
Vol 127 (2) ◽  
pp. 280-286 ◽  
Author(s):  
Marie A. Neu ◽  
Yasemin Tanyildizi ◽  
Arthur Wingerter ◽  
Nicole Henninger ◽  
Khalifa El Malki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document