A Robust Sentiment Analysis Method Based on Sequential Combination of Convolutional and Recursive Neural Networks

2019 ◽  
Vol 50 (3) ◽  
pp. 2745-2761 ◽  
Author(s):  
Hossein Sadr ◽  
Mir Mohsen Pedram ◽  
Mohammad Teshnehlab
Author(s):  
Dr. C. Arunabala ◽  
P. Jwalitha ◽  
Soniya Nuthalapati

The traditional text sentiment analysis method is mainly based on machine learning. However, its dependence on emotion dictionary construction and artificial design and extraction features makes the generalization ability limited. In contrast, depth models have more powerful expressive power, and can learn complex mapping functions from data to affective semantics better. In this paper, a Convolution Neural Networks (CNNs) model combined with SVM text sentiment analysis is proposed. The experimental results show that the proposed method improves the accuracy of text sentiment classification effectively compared with traditional CNN, and confirms the effectiveness of sentiment analysis based on CNNs and SVM


2019 ◽  
Vol 14 (2) ◽  
pp. 272-285 ◽  
Author(s):  
Fushen Yang ◽  
Changshun Du ◽  
Lei Huang

Text sentiment analysis is one of the most important tasks in the field of public opinion monitoring, service evaluation and satisfaction analysis in the current network environment. At present, the sentiment analysis algorithms with good effects are all based on statistical learning methods. The performance of this method depends on the quality of feature extraction, while good feature engineering requires a high degree of expertise and is also time-consuming, laborious, and affords poor opportunities for mobility. Neural networks can reduce dependence on feature engineering. Recurrent neural networks can obtain context information but the order of words will lead to bias; the text analysis method based on convolutional neural network can obtain important features of text through pooling but it is difficult to obtain contextual information. Aiming at the above problems, this paper proposes a sentiment analysis method based on the combination of R-CNN and C-RNN based on a fusion gate. Firstly, RNN and CNN are combined in different ways to alleviate the shortcomings of the two, and the sub-analysis network R-CNN and C-RNN finally combine the two networks through the gating unit to form the final analysis model. We performed experiments on different data sets to verify the effectiveness of the method.


Author(s):  
Taeuk Kim ◽  
Jihun Choi ◽  
Daniel Edmiston ◽  
Sanghwan Bae ◽  
Sang-goo Lee

Most existing recursive neural network (RvNN) architectures utilize only the structure of parse trees, ignoring syntactic tags which are provided as by-products of parsing. We present a novel RvNN architecture that can provide dynamic compositionality by considering comprehensive syntactic information derived from both the structure and linguistic tags. Specifically, we introduce a structure-aware tag representation constructed by a separate tag-level tree-LSTM. With this, we can control the composition function of the existing wordlevel tree-LSTM by augmenting the representation as a supplementary input to the gate functions of the tree-LSTM. In extensive experiments, we show that models built upon the proposed architecture obtain superior or competitive performance on several sentence-level tasks such as sentiment analysis and natural language inference when compared against previous tree-structured models and other sophisticated neural models.


Sign in / Sign up

Export Citation Format

Share Document