Analytical determination for degenerate grazing bifurcation points in the single-degree-of-freedom impact oscillator

2017 ◽  
Vol 90 (1) ◽  
pp. 443-456 ◽  
Author(s):  
Shan Yin ◽  
Yongkang Shen ◽  
Guilin Wen ◽  
Huidong Xu
2006 ◽  
Vol 1 (4) ◽  
pp. 328-335 ◽  
Author(s):  
Phanikrishna Thota ◽  
Xiaopeng Zhao ◽  
Harry Dankowicz

Grazing bifurcations in impact oscillators characterize the transition in asymptotic dynamics between impacting and nonimpacting motions. Several different grazing bifurcation scenarios under variations of a single system parameter have been previously documented in the literature. In the present paper, the transition between two characteristically different co-dimension-one grazing bifurcation scenarios is found to be associated with the presence of certain co-dimension-two grazing bifurcation points and their unfolding in parameter space. The analysis investigates the distribution of such degenerate bifurcation points along the grazing bifurcation manifold in examples of single-degree-of-freedom oscillators. Unfoldings obtained with the discontinuity-mapping technique are used to explore the possible influence on the global dynamics of the smooth co-dimension-one bifurcations of the impacting dynamics that emanate from such co-dimension-two points. It is shown that attracting impacting motion may result from parameter variations through a co-dimension-two grazing bifurcation of an initially unstable limit cycle in a nonlinear micro-electro-mechanical systems (MEMS) oscillator.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771661 ◽  
Author(s):  
Jun Wang ◽  
Yongjun Shen ◽  
Shaopu Yang

In this article, the dynamical behavior of a single degree-of-freedom impact oscillator with impulse excitation is studied, where the mass impacts at one stop and is shocked with impulse excitation at the other stop. The existing and stability conditions for periodic motion of the oscillator are established. The effects of system parameters on dynamical response are discussed under different initial velocities. It is found that smaller shock gap than impact gap could make the periodic motion more stable. The decrease in natural frequency would consume less impact energy, make the vibration frequency smaller, and reduce the vibration efficiency. Finally, the dynamical properties are further analyzed under a special case, that is, the shock gap approaches zero. It could be seen that the larger shock coefficient and impact restitution coefficient would make vibration period smaller. Based on the stability condition, there are an upper limit for the product of shock coefficient and impact restitution coefficient, so that a lower limit of corresponding vibration period exists.


Author(s):  
Shun Zhong ◽  
Jingyuan Tan ◽  
Zhicheng Cui ◽  
Tanghong Xu ◽  
Liqing Li

Purpose. Impacts appear in a wide range of mechanical systems. To study the dynamical behavior introduced by impact in practical way, a single-degree-of-freedom impact oscillator rig is designed. Originality. A simple piece-wise linear system with symmetrical flexible constraints is designed and manufactured to carry out a wide range of experimental dynamic analysis and ultimately to validate piece-wise models. The new design choice is based on the following criteria: accuracy in representing the mathematical model, manufacturing simplicity, flexibility in terms of parameter changes and cost effectiveness as well avoidance of the delay introduced by the structure. Meanwhile, the new design provides the possibility of the applications of the complex control algorithms. Design/methodology/approach. The design process is described in detail. The initial experimental results of the rig as well as numerical simulation results are given. In this rig, the mass driven force is generated by electromagnet, which can be adjusted and control easily. Also, most of the physical parameters can be varied in a certain range to enhance flexibility of the system allowing to observe subtle phenomena. Findings. Compared with the simulation results, the designed rig is proved to be validated. Then, the initial experimental results demonstrate potentials of this rig to study fundamental impact phenomena, which have been observed in various engineering systems. They also indicate that this rig can be a good platform for investigating nonlinear control methods.


Author(s):  
Yongkang Shen ◽  
Shan Yin ◽  
Guilin Wen ◽  
Huidong Xu

Based on the special dynamical property of continuous transition at certain degenerate grazing points in the single-degree-of-freedom impact oscillator, the control problem of the grazing-induced chaos is investigated in this paper. To design degenerate grazing bifurcations, we show how to obtain the degenerate grazing points of the 1/n impact periodic motions by the existence and stability analysis first. Then, a discrete-in-time feedback control strategy is used to suppress the grazing-induced chaos into the 1/n impact periodic motions precisely by the desired degenerate grazing bifurcation. The feasibility of the control strategy is verified by numerical simulations.


2021 ◽  
Vol 159 ◽  
pp. 104258
Author(s):  
Jeonghwan Lee ◽  
Lailu Li ◽  
Sung Yul Shin ◽  
Ashish D. Deshpande ◽  
James Sulzer

Sign in / Sign up

Export Citation Format

Share Document