robotic gait
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 47)

H-INDEX

26
(FIVE YEARS 3)

Author(s):  
İsmail Çalıkuşu ◽  
Esma Uzunhisarcıklı ◽  
Uğur Fidan ◽  
Mehmet Bahadır Çetinkaya

Author(s):  
Choonghyun Son ◽  
Anna Lee ◽  
Junkyung Lee ◽  
DaeEun Kim ◽  
Seung-Jong Kim ◽  
...  

Abstract Background Aging societies lead to higher demand for gait rehabilitation as age-related neurological disorders such as stroke and spinal cord injury increase. Since conventional methods for gait rehabilitation are physically and economically burdensome, robotic gait training systems have been studied and commercialized, many of which provided movements confined in the sagittal plane. For better outcomes of gait rehabilitation with more natural gait patterns, however, it is desirable to provide pelvic movements in the transverse plane. In this study, a robotic gait training system capable of pelvic motions in the transverse plane was used to evaluate the effect of the pelvic motions on stroke patients. Method Healbot T, which is a robotic gait training system and capable of providing pelvic movements in the transverse plane as well as flexion/extension of the hip and knee joints and adduction/abduction of the hip joints, is introduced and used to evaluate the effect of the pelvic movement on gait training of stroke patients. Gait trainings in Healbot T with and without pelvic movements are carried out with stroke patients having hemiparesis. Experiment Twenty-four stroke patients with hemiparesis were randomly assigned into two groups and 23 of them successfully completed the experiment except one subject who had dropped out due to personal reasons. Pelvis-on group was provided with pelvic motions whereas no pelvic movement was allowed for pelvis-off group during 10 sessions of gait trainings in Healbot T. Electromyography (EMG) signals and interaction forces as well as the joint angles of the robot were measured. Gait parameters such as stride length, cadence, and walking speed were measured while walking on the ground without assistance of Healbot T after gait training on 1st, 5th, and 10th day. Result Stride length significantly increased in both groups. Furthermore, cadence and walking speed of the pelvis-on group were increased by 10.6% and 11.8%. Although interaction forces of both groups except the thighs showed no differences, EMG signals from gluteus medius of the pelvis-on group increased by 88.6% during stance phase. In addition, EMG signals of biceps femoris, gastrocnemius medial, and gastrocnemius lateral of the pelvis-on group increased whereas EMG signals of the pelvis-off group except gastrocnemius lateral showed no difference after gait trainings. Conclusion Gait training using a robotic gait training system with pelvic movements was conducted to investigate the effects of lateral and rotational pelvic movements in gait training of stroke patients. The pelvic movements affected to increase voluntary muscle activation during the stance phase as well as cadence and walking speed. Clinical trial registration KCT0003762, 2018-1254, Registered 28 October 2018, https://cris.nih.go.kr/cris/search/search_result_st01_kren.jsp?seq=14310&ltype=&rtype=


2021 ◽  
Vol 102 (10) ◽  
pp. e72
Author(s):  
Megan Douglas ◽  
Alexandria Holden ◽  
Lacy McDonald ◽  
Simon Driver ◽  
Seema Sikka ◽  
...  

2021 ◽  
pp. 113490
Author(s):  
Nathan D. Neckel ◽  
Haining Dai ◽  
John Hanckel ◽  
Yichien Lee ◽  
Christopher Albanese ◽  
...  

Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Elvira Maranesi ◽  
Roberta Bevilacqua ◽  
Mirko Di Rosa ◽  
Giuseppe Pelliccioni ◽  
Valentina Di Donna ◽  
...  

Abstract Background Stroke is a leading cause of disability, injury, and death in elderly people and represents a major public health problem with substantial medical and economic consequences. The incidence of stroke rapidly increases with age, doubling for each decade after age 55 years. Gait impairment is one of the most important problems after stroke, and improving walking function is often a key component of any rehabilitation program. To achieve this goal, a robotic gait trainer seems to be promising. In fact, some studies underline the efficacy of robotic gait training based on end-effector technology, for different diseases, in particular in stroke patients. In this randomized controlled trial, we verify the efficacy of the robotic treatment in terms of improving the gait and reducing the risk of falling and its long-term effects. Methods In this single-blind randomized controlled trial, we will include 152 elderly subacute stroke patients divided in two groups to receive a traditional rehabilitation program or a robotic rehabilitation using G-EO system, an end-effector device for the gait rehabilitation, in addition to the traditional therapy. Twenty treatment sessions will be conducted, divided into 3 training sessions per week, for 7 weeks. The control group will perform traditional therapy sessions lasting 50 min. The technological intervention group, using the G-EO system, will carry out 30 min of traditional therapy and 20 min of treatment with a robotic system. The primary outcome of the study is the evaluation of the falling risk. Secondary outcomes are the assessment of the gait improvements and the fear of falling. Further evaluations, such as length and asymmetry of the step, walking and functional status, and acceptance of the technology, will be carried. Discussion The final goal of the present study is to propose a new approach and an innovative therapeutic plan in the post-stroke rehabilitation, focused on the use of a robotic device, in order to obtain the beneficial effects of this treatment. Trial registration ClinicalTrials.gov NCT04087083. Registered on September 12, 2019


2021 ◽  
Vol 159 ◽  
pp. 104258
Author(s):  
Jeonghwan Lee ◽  
Lailu Li ◽  
Sung Yul Shin ◽  
Ashish D. Deshpande ◽  
James Sulzer

Sign in / Sign up

Export Citation Format

Share Document