Edge states and frequency response in nonlinear forced-damped model of valve spring

2019 ◽  
Vol 99 (1) ◽  
pp. 661-678
Author(s):  
Majdi Gzal ◽  
O. V. Gendelman
2011 ◽  
Vol 680 ◽  
pp. 114-149 ◽  
Author(s):  
ZORANA ZERAVCIC ◽  
DETLEF LOHSE ◽  
WIM VAN SAARLOOS

In this paper the collective oscillations of a bubble cloud in an acoustic field are theoretically analysed with concepts and techniques of condensed matter physics. More specifically, we will calculate the eigenmodes and their excitabilities, eigenfrequencies, densities of states, responses, absorption and participation ratios to better understand the collective dynamics of coupled bubbles and address the question of possible localization of acoustic energy in the bubble cloud. The radial oscillations of the individual bubbles in the acoustic field are described by coupled linearized Rayleigh–Plesset equations. We explore the effects of viscous damping, distance between bubbles, polydispersity, geometric disorder, size of the bubbles and size of the cloud. For large enough clusters, the collective response is often very different from that of a typical mode, as the frequency response of each mode is sufficiently wide that many modes are excited when the cloud is driven by ultrasound. The reason is the strong effect of viscosity on the collective mode response, which is surprising, as viscous damping effects are small for single-bubble oscillations in water. Localization of acoustic energy is only found in the case of substantial bubble size polydispersity or geometric disorder. The lack of localization for a weak disorder is traced back to the long-range 1/r interaction potential between the individual bubbles. The results of the present paper are connected to recent experimental observations of collective bubble oscillations in a two-dimensional bubble cloud, where pronounced edge states and a pronounced low-frequency response had been observed, both consistent with the present theoretical findings. Finally, an outlook to future possible experiments is given.


Author(s):  
Majdi Gzal ◽  
Oleg V. Gendelman

Abstract We address the dynamics of helical compression valve springs of an internal combustion engine. To this end, the spring is mathematically modeled as a finite non-homogenous one-dimensional mass-spring-damper discrete chain. Regarding the boundary conditions, the upper end of the chain is forced with periodic displacement, which mimics the actual camshaft profile, while the other end is fixed. In order to model the interaction between the valve and valve seat, the displacement of the upper mass is constrained to be nonnegative by adding an obstacle such that when it approaches the obstacle, it experiences an impact that satisfies the Newton impact law with restitution coefficient less than unity. Another source of damping in this model arising from the internal damping of the spring material. The nonlinearity of the model originates from the periodic impact interactions. This interplay between nonlinearity and discreteness supports time-periodic and spatially localized solutions characterized by a strong localization at the edge of the chain (i.e. edge states) such that the periodicity of the impact allows derivation of exact analytical solutions for the forced-damped edge state. Then, the governing equations are solved numerically in order to illustrate the exact solution. The results are compared to experimental findings from analysis of actual automotive valve spring.


1990 ◽  
Vol 137 (5) ◽  
pp. 290 ◽  
Author(s):  
J.L. Douce ◽  
L. Balmer
Keyword(s):  

2012 ◽  
Vol 132 (8) ◽  
pp. 630-637
Author(s):  
Toru Wakimoto ◽  
Yoshimitsu Takahashi ◽  
Norihito Kimura ◽  
Yukitoshi Narumi ◽  
Naoki Hayakawa

2009 ◽  
Vol 129 (4) ◽  
pp. 517-525 ◽  
Author(s):  
Satoru Miyazaki ◽  
Yoshinobu Mizutani ◽  
Hiroshi Suzuki ◽  
Michiharu Ichikawa

Sign in / Sign up

Export Citation Format

Share Document