scholarly journals ROmodel: modeling robust optimization problems in Pyomo

Author(s):  
Johannes Wiebe ◽  
Ruth Misener

AbstractThis paper introduces ROmodel, an open source Python package extending the modeling capabilities of the algebraic modeling language Pyomo to robust optimization problems. ROmodel helps practitioners transition from deterministic to robust optimization through modeling objects which allow formulating robust models in close analogy to their mathematical formulation. ROmodel contains a library of commonly used uncertainty sets which can be generated using their matrix representations, but it also allows users to define custom uncertainty sets using Pyomo constraints. ROmodel supports adjustable variables via linear decision rules. The resulting models can be solved using ROmodels solvers which implement both the robust reformulation and cutting plane approach. ROmodel is a platform to implement and compare custom uncertainty sets and reformulations. We demonstrate ROmodel’s capabilities by applying it to six case studies. We implement custom uncertainty sets based on (warped) Gaussian processes to show how ROmodel can integrate data-driven models with optimization.

Author(s):  
Jianzhe Zhen ◽  
Frans J. C. T. de Ruiter ◽  
Ernst Roos ◽  
Dick den Hertog

In this paper, we consider uncertain second-order cone (SOC) and semidefinite programming (SDP) constraints with polyhedral uncertainty, which are in general computationally intractable. We propose to reformulate an uncertain SOC or SDP constraint as a set of adjustable robust linear optimization constraints with an ellipsoidal or semidefinite representable uncertainty set, respectively. The resulting adjustable problem can then (approximately) be solved by using adjustable robust linear optimization techniques. For example, we show that if linear decision rules are used, then the final robust counterpart consists of SOC or SDP constraints, respectively, which have the same computational complexity as the nominal version of the original constraints. We propose an efficient method to obtain good lower bounds. Moreover, we extend our approach to other classes of robust optimization problems, such as nonlinear problems that contain wait-and-see variables, linear problems that contain bilinear uncertainty, and general conic constraints. Numerically, we apply our approach to reformulate the problem on finding the minimum volume circumscribing ellipsoid of a polytope and solve the resulting reformulation with linear and quadratic decision rules as well as Fourier-Motzkin elimination. We demonstrate the effectiveness and efficiency of the proposed approach by comparing it with the state-of-the-art copositive approach. Moreover, we apply the proposed approach to a robust regression problem and a robust sensor network problem and use linear decision rules to solve the resulting adjustable robust linear optimization problems, which solve the problem to (near) optimality. Summary of Contribution: Computing robust solutions for nonlinear optimization problems with uncertain second-order cone and semidefinite programming constraints are of much interest in real-life applications, yet they are in general computationally intractable. This paper proposes a computationally tractable approximation for such problems. Extensive computational experiments on (i) computing the minimum volume circumscribing ellipsoid of a polytope, (ii) robust regressions, and (iii) robust sensor networks are conducted to demonstrate the effectiveness and efficiency of the proposed approach.


Author(s):  
Frauke Liers ◽  
Lars Schewe ◽  
Johannes Thürauf

For a mixed-integer linear problem (MIP) with uncertain constraints, the radius of robust feasibility (RRF) determines a value for the maximal size of the uncertainty set such that robust feasibility of the MIP can be guaranteed. The approaches for the RRF in the literature are restricted to continuous optimization problems. We first analyze relations between the RRF of a MIP and its continuous linear (LP) relaxation. In particular, we derive conditions under which a MIP and its LP relaxation have the same RRF. Afterward, we extend the notion of the RRF such that it can be applied to a large variety of optimization problems and uncertainty sets. In contrast to the setting commonly used in the literature, we consider for every constraint a potentially different uncertainty set that is not necessarily full-dimensional. Thus, we generalize the RRF to MIPs and to include safe variables and constraints; that is, where uncertainties do not affect certain variables or constraints. In the extended setting, we again analyze relations between the RRF for a MIP and its LP relaxation. Afterward, we present methods for computing the RRF of LPs and of MIPs with safe variables and constraints. Finally, we show that the new methodologies can be successfully applied to the instances in the MIPLIB 2017 for computing the RRF. Summary of Contribution: Robust optimization is an important field of operations research due to its capability of protecting optimization problems from data uncertainties that are usually defined via so-called uncertainty sets. Intensive research has been conducted in developing algorithmically tractable reformulations of the usually semi-infinite robust optimization problems. However, in applications it also important to construct appropriate uncertainty sets (i.e., prohibiting too conservative, intractable, or even infeasible robust optimization problems due to the choice of the uncertainty set). In doing so, it is useful to know the maximal “size” of a given uncertainty set such that a robust feasible solution still exists. In this paper, we study one notion of “size”: the radius of robust feasibility (RRF). We contribute on the theoretical side by generalizing the RRF to MIPs as well as to include “safe” variables and constraints (i.e., where uncertainties do not affect certain variables or constraints). This allows to apply the RRF to many applications since safe variables and constraints exist in most applications. We also provide first methods for computing the RRF of LPs as well as of MIPs with safe variables and constraints. Finally, we show that the new methodologies can be successfully applied to the instances in the MIPLIB 2017 for computing the RRF.


2021 ◽  
Author(s):  
Dimitris Bertsimas ◽  
Shimrit Shtern ◽  
Bradley Sturt

In “Two-Stage Sample Robust Optimization,” Bertsimas, Shtern, and Sturt investigate a simple approximation scheme, based on overlapping linear decision rules, for solving data-driven two-stage distributionally robust optimization problems with the type-infinity Wasserstein ambiguity set. Their main result establishes that this approximation scheme is asymptotically optimal for two-stage stochastic linear optimization problems; that is, under mild assumptions, the optimal cost and optimal first-stage decisions obtained by approximating the robust optimization problem converge to those of the underlying stochastic problem as the number of data points grows to infinity. These guarantees notably apply to two-stage stochastic problems that do not have relatively complete recourse, which arise frequently in applications. In this context, the authors show through numerical experiments that the approximation scheme is practically tractable and produces decisions that significantly outperform those obtained from state-of-the-art data-driven alternatives.


Author(s):  
Juan S. Borrero ◽  
Leonardo Lozano

We study a class of sequential defender-attacker optimization problems where the defender’s objective is uncertain and depends on the operations of the attacker, which are represented by a mixed-integer uncertainty set. The defender seeks to hedge against the worst possible data realization, resulting in a robust optimization problem with a mixed-integer uncertainty set, which requires the solution of a challenging mixed-integer problem, which can be seen as a saddle-point problem over a nonconvex domain. We study two exact solution algorithms and present two feature applications for which the uncertainty is naturally modeled as a mixed-integer set. Our computational experiments show that the considered algorithms greatly outperform standard algorithms both in terms of computational time and solution quality. Moreover, our results show that modeling uncertainty with mixed-integer sets, instead of approximating the data using convex sets, results in less conservative solutions, which translates to a lower cost for the defender to protect from uncertainty. Summary of Contribution: We consider a class of defender-attacker problems where the defender has to make operational decisions that depend on uncertain actions from an adversarial attacker. Due to the type of information available to the defender, neither probabilistic modeling, nor robust optimization methods with convex uncertainty sets, are well suited to address the defender’s decision-making problem. Consequently, we frame the defender’s problem as a class of robust optimization problems with a mixed-integer uncertainty sets, and devise two exact algorithms that solve this class of problems. A comprehensive computational study shows that for the considered applications, our algorithms improves the performance of existing robust optimization approaches that can be adapted to solve this class of problems. Moreover, we show how mixed-integer uncertainty sets can reduce the level of over-conservatism that is a known issue of robust optimization approaches.


2009 ◽  
Vol 130 (1) ◽  
pp. 177-209 ◽  
Author(s):  
Daniel Kuhn ◽  
Wolfram Wiesemann ◽  
Angelos Georghiou

Author(s):  
Sara Marie Mc Carthy ◽  
Phebe Vayanos ◽  
Milind Tambe

We consider the problem of dynamically allocating screening resources of different efficacies (e.g., magnetic or X-ray imaging) at checkpoints (e.g., at airports or ports) to successfully avert an attack by one of the screenees. Previously, the Threat Screening Game model was introduced to address this problem under the assumption that screenee arrival times are perfectly known. In reality, arrival times are uncertain, which severely impedes the implementability and performance of this approach. We thus propose a novel framework for dynamic allocation of threat screening resources that explicitly accounts for uncertainty in the screenee arrival times. We model the problem as a multistage robust optimization problem and propose a tractable solution approach using compact linear decision rules combined with robust reformulation and constraint randomization. We perform extensive numerical experiments which showcase that our approach outperforms (a) exact solution methods in terms of tractability, while incurring only a very minor loss in optimality, and (b) methods that ignore uncertainty in terms of both feasibility and optimality.


2020 ◽  
Author(s):  
L. Jeff Hong ◽  
Zhiyuan Huang ◽  
Henry Lam

Robust optimization (RO) is a common approach to tractably obtain safeguarding solutions for optimization problems with uncertain constraints. In this paper, we study a statistical framework to integrate data into RO based on learning a prediction set using (combinations of) geometric shapes that are compatible with established RO tools and on a simple data-splitting validation step that achieves finite-sample nonparametric statistical guarantees on feasibility. We demonstrate how our required sample size to achieve feasibility at a given confidence level is independent of the dimensions of both the decision space and the probability space governing the stochasticity, and we discuss some approaches to improve the objective performances while maintaining these dimension-free statistical feasibility guarantees. This paper was accepted by Yinyu Ye, optimization.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Ru-Ru Jia ◽  
Xue-Jie Bai

Robust optimization is a powerful and relatively novel methodology to cope with optimization problems in the presence of uncertainty. The positive aspect of robust optimization approach is its computational tractability that attracts more and more attention. In this paper, we focus on an ambiguous P-model where probability distributions are partially known. We discuss robust counterpart (RC) of uncertain linear constraints under two refined uncertain sets by robust approach and further find the safe tractable approximations of chance constraints in the ambiguous P-model. Because of the probability constraints embedded in the ambiguous P-model, it is computationally intractable. The advantage of our approach lies in choosing an implicit way to treat stochastic uncertainty models instead of solving them directly. The process above can enable the transformation of proposed P-model to a tractable deterministic one under the refined uncertainty sets. A numerical example about portfolio selection demonstrates that the ambiguous P-model can help the decision maker to determine the optimal investment proportions of various stocks. Sensitivity analyses explore the trade-off between optimization and robustness by adjusting parameter values. Comparison study is conducted to validate the benefit of our ambiguous P-model.


Sign in / Sign up

Export Citation Format

Share Document