Characterization of promoter elements required for expression and induction by sucrose of the Arabidopsis COX5b-1 nuclear gene, encoding the zinc-binding subunit of cytochrome c oxidase

2009 ◽  
Vol 69 (6) ◽  
pp. 729-743 ◽  
Author(s):  
Raúl N. Comelli ◽  
Ivana L. Viola ◽  
Daniel H. Gonzalez
Genetics ◽  
2001 ◽  
Vol 158 (4) ◽  
pp. 1629-1643
Author(s):  
Sébastien Szuplewski ◽  
Régine Terracol

Abstract Cytochrome c oxidase is the terminal enzyme of the mitochondrial electron transfer chain. In eukaryotes, the enzyme is composed of 3 mitochondrial DNA-encoded subunits and 7–10 (in mammals) nuclear DNA-encoded subunits. This enzyme has been extensively studied in mammals and yeast but, in Drosophila, very little is known and no mutant has been described so far. Here we report the genetic and molecular characterization of mutations in cyclope (cype) and the cloning of the gene encoding a cytochrome c oxidase subunit VIc homolog. cype is an essential gene whose mutations are lethal and show pleiotropic phenotypes. The 77-amino acid peptide encoded by cype is 46% identical and 59% similar to the human subunit (75 amino acids). The transcripts are expressed maternally and throughout development in localized regions. They are found predominantly in the central nervous system of the embryo; in the central region of imaginal discs; in the germarium, follicular, and nurse cells of the ovary; and in testis. A search in the Genome Annotation Database of Drosophila revealed the absence of subunit VIIb and the presence of 9 putative nuclear cytochrome c oxidase subunits with high identity scores when compared to the 10 human subunits.


Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1711-1721
Author(s):  
Donald L Auger ◽  
Kathleen J Newton ◽  
James A Birchler

Abstract Each mitochondrion possesses a genome that encodes some of its own components. The nucleus encodes most of the mitochondrial proteins, including the polymerases and factors that regulate the expression of mitochondrial genes. Little is known about the number or location of these nuclear factors. B-A translocations were used to create dosage series for 14 different chromosome arms in maize plants with normal cytoplasm. The presence of one or more regulatory factors on a chromosome arm was indicated when variation of its dosage resulted in the alteration in the amount of a mitochondrial transcript. We used quantitative Northern analysis to assay the transcript levels of three mitochondrially encoded components of the cytochrome c oxidase complex (cox1, cox2, and cox3). Data for a nuclearly encoded component (cox5b) and for two mitochondrial genes that are unrelated to cytochrome c oxidase, ATP synthase α-subunit and 18S rRNA, were also determined. Two tissues, embryo and endosperm, were compared and most effects were found to be tissue specific. Significantly, the array of dosage effects upon mitochondrial genes was similar to what had been previously found for nuclear genes. These results support the concept that although mitochondrial genes are prokaryotic in origin, their regulation has been extensively integrated into the eukaryotic cell.


Sign in / Sign up

Export Citation Format

Share Document