Soil environmental factors drive seed density across vegetation types on the Tibetan Plateau

2017 ◽  
Vol 419 (1-2) ◽  
pp. 349-361 ◽  
Author(s):  
Miaojun Ma ◽  
James W. Dalling ◽  
Zhen Ma ◽  
Xianhui Zhou
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Hao Zhang ◽  
Jian Sun ◽  
Junnan Xiong

Evapotranspiration (ET) is a key factor to further our understanding of climate change processes, especially on the Tibetan Plateau, which is sensitive to global change. Herein, the spatial patterns of ET are examined, and the effects of environmental factors on ET at different scales are explored from the years 2000 to 2012. The results indicated that a steady trend in ET was detected over the past decade. Meanwhile, the spatial distribution shows an increase of ET from the northwest to the southeast, and the rate of change in ET is lower in the middle part of the Tibetan Plateau. Besides, the positive effect of radiation on ET existed mainly in the southwest. Based on the environment gradient transects, the ET had positive correlations with temperature (R>0.85, p<0.0001), precipitation (R > 0.89, p < 0.0001), and NDVI (R > 0.75, p < 0.0001), but a negative correlation between ET and radiation (R = 0.76, p < 0.0001) was observed. We also found that the relationships between environmental factors and ET differed in the different grassland ecosystems, which indicated that vegetation type is one factor that can affect ET. Generally, the results indicate that ET can serve as a valuable ecological indicator.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Bin Wang ◽  
Ben Niu ◽  
Xiaojie Yang ◽  
Song Gu

We examined the response of soil CO2emissions to warming and environmental control mechanisms in an alpine swamp meadow ecosystem on the Tibetan Plateau. Experimental warming treatments were performed in an alpine swamp meadow ecosystem using two open-top chambers (OTCs) 40 cm (OA) and 80 cm (OB) tall. The results indicate that temperatures were increased by 2.79°C in OA and 4.96°C in OB, that ecosystem CO2efflux showed remarkable seasonal variations in the control (CK) and the two warming treatments, and that all three systems yielded peak values in August of 123.6, 142.3, and 166.2 g C m−2 month−1. Annual CO2efflux also showed a gradual upward trend with increased warming: OB (684.1 g C m−2 year−1) > OA (580.7 g C m−2 year−1) > CK (473.3 g C m−2 year−1). Path analysis revealed that the 5 cm depth soil temperature was the most important environmental factor affecting soil CO2emissions in the three systems.


2021 ◽  
Author(s):  
Haiyan Feng ◽  
Zhe Wang ◽  
Pengli Jia ◽  
Jingping Gai ◽  
Baodong Chen ◽  
...  

Abstract Soil CO2-fixing microbes play a significant role in CO2-fixation in the terrestrial ecosystems, particularly in the Tibetan Plateau. To understand carbon sequestration by soil CO2-fixing microbes and the carbon cycling in alpine meadow soils, microbial diversity and their driving environmental factors were explored along an elevation gradient from 3900m to 5100m, on both east and west slopes of Mila Mountain region on the Tibetan Plateau. The CO2-fixing microbial communities were characterized by high-throughput sequencing targeting the cbbL gene,encoding the large subunit for the CO2-fixing protein ribulose 1, 5-bisphosphate carboxylase/oxygenase. The overall OTU abundance is concentrated at an altitude between 4300m~4900m. The species richness and distribution uniformity on the east slope is better than those on the west slope. In terms of microbial community composition, Proteobacteria is dominant, and the most abundant genera are Cupriavidus, Rhodobacter, Sulfurifustis and Thiobacillus. The CO2-fixing microbial community structure dramatically shifted along the elevation. It was jointly driven by vegetation coverage, soil moisture content, and soil organic carbon and soil particle size, and most environmental factors are positively correlated. Our results are helpful to understand the variation in soil microbial community and its role in soil carbon cycling along elevation gradients.


2019 ◽  
Vol 124 (5) ◽  
pp. 1132-1147 ◽  
Author(s):  
Shan Lin ◽  
Genxu Wang ◽  
Jinming Feng ◽  
Li Dan ◽  
Xiangyang Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document