scholarly journals Diversity And Distribution Of CO2-Fixing Microbial Community Along Elevation Gradients In Meadow Soils On The Tibetan Plateau

Author(s):  
Haiyan Feng ◽  
Zhe Wang ◽  
Pengli Jia ◽  
Jingping Gai ◽  
Baodong Chen ◽  
...  

Abstract Soil CO2-fixing microbes play a significant role in CO2-fixation in the terrestrial ecosystems, particularly in the Tibetan Plateau. To understand carbon sequestration by soil CO2-fixing microbes and the carbon cycling in alpine meadow soils, microbial diversity and their driving environmental factors were explored along an elevation gradient from 3900m to 5100m, on both east and west slopes of Mila Mountain region on the Tibetan Plateau. The CO2-fixing microbial communities were characterized by high-throughput sequencing targeting the cbbL gene,encoding the large subunit for the CO2-fixing protein ribulose 1, 5-bisphosphate carboxylase/oxygenase. The overall OTU abundance is concentrated at an altitude between 4300m~4900m. The species richness and distribution uniformity on the east slope is better than those on the west slope. In terms of microbial community composition, Proteobacteria is dominant, and the most abundant genera are Cupriavidus, Rhodobacter, Sulfurifustis and Thiobacillus. The CO2-fixing microbial community structure dramatically shifted along the elevation. It was jointly driven by vegetation coverage, soil moisture content, and soil organic carbon and soil particle size, and most environmental factors are positively correlated. Our results are helpful to understand the variation in soil microbial community and its role in soil carbon cycling along elevation gradients.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhigang Wu ◽  
Xinwei Xu ◽  
Juan Zhang ◽  
Gerhard Wiegleb ◽  
Hongwei Hou

Abstract Background Due to the environmental heterogeneity along elevation gradients, alpine ecosystems are ideal study objects for investigating how ecological variables shape the genetic patterns of natural species. The highest region in the world, the Qinghai-Tibetan Plateau, is a hotspot for the studies of evolutionary processes in plants. Many large rivers spring from the plateau, providing abundant habitats for aquatic and amphibious organisms. In the present study, we examined the genetic diversity of 13 Ranunculus subrigidus populations distributed throughout the plateau in order to elucidate the relative contribution of geographic distance and environmental dissimilarity to the spatial genetic pattern. Results A relatively low level of genetic diversity within populations was found. No spatial genetic structure was suggested by the analyses of molecular variance, Bayesian clustering analysis and Mantel tests. Partial Mantel tests and multiple matrix regression analysis showed a significant influence of the environment on the genetic divergence of the species. Both climatic and water quality variables contribute to the habitat heterogeneity of R. subrigidus populations. Conclusions Our results suggest that historical processes involving long-distance dispersal and local adaptation may account for the genetic patterns of R. subrigidus and current environmental factors play an important role in the genetic differentiation and local adaptation of aquatic plants in alpine landscapes.


2021 ◽  
Vol 13 (7) ◽  
pp. 1240
Author(s):  
Junpeng Lou ◽  
Guoyin Xu ◽  
Zhongjing Wang ◽  
Zhigang Yang ◽  
Sanchuan Ni

The Qaidam Basin is a unique and complex ecosystem, wherein elevation gradients lead to high spatial heterogeneity in vegetation dynamics and responses to environmental factors. Based on the remote sensing data of Moderate Resolution Imaging Spectroradiometer (MODIS), Tropical Rainfall Measuring Mission (TRMM) and Global Land Data Assimilation System (GLDAS), we analyzed the spatiotemporal variations of vegetation dynamics and responses to precipitation, accumulative temperature (AT) and soil moisture (SM) in the Qaidam Basin from 2001 to 2016. Moreover, the contribution of those factors to vegetation dynamics at different altitudes was analyzed via an artificial neural network (ANN) model. The results indicated that the Normalized Difference Vegetation Index (NDVI) values in the growing season showed an overall upward trend, with an increased rate of 0.001/year. The values of NDVI in low-altitude areas were higher than that in high-altitude areas, and the peak values of NDVI appeared along the elevation gradient at 4400–4600 m. Thanks to the use of ANN, we were able to detect the relative contribution of various environmental factors; the relative contribution rate of AT to the NDVI dynamic was the most significant (35.17%) in the low-elevation region (< 2900 m). In the mid-elevation area (2900–3900 m), precipitation contributed 44.76% of the NDVI dynamics. When the altitude was higher than 3900 m, the relative contribution rates of AT (39.50%) and SM (38.53%) had no significant difference but were significantly higher than that of precipitation (21.97%). The results highlight that the different environmental factors have various contributions to vegetation dynamics at different altitudes, which has important theoretical and practical significance for regulating ecological processes.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Hao Zhang ◽  
Jian Sun ◽  
Junnan Xiong

Evapotranspiration (ET) is a key factor to further our understanding of climate change processes, especially on the Tibetan Plateau, which is sensitive to global change. Herein, the spatial patterns of ET are examined, and the effects of environmental factors on ET at different scales are explored from the years 2000 to 2012. The results indicated that a steady trend in ET was detected over the past decade. Meanwhile, the spatial distribution shows an increase of ET from the northwest to the southeast, and the rate of change in ET is lower in the middle part of the Tibetan Plateau. Besides, the positive effect of radiation on ET existed mainly in the southwest. Based on the environment gradient transects, the ET had positive correlations with temperature (R>0.85, p<0.0001), precipitation (R > 0.89, p < 0.0001), and NDVI (R > 0.75, p < 0.0001), but a negative correlation between ET and radiation (R = 0.76, p < 0.0001) was observed. We also found that the relationships between environmental factors and ET differed in the different grassland ecosystems, which indicated that vegetation type is one factor that can affect ET. Generally, the results indicate that ET can serve as a valuable ecological indicator.


2017 ◽  
Vol 419 (1-2) ◽  
pp. 349-361 ◽  
Author(s):  
Miaojun Ma ◽  
James W. Dalling ◽  
Zhen Ma ◽  
Xianhui Zhou

Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 527
Author(s):  
Prakriti Sharma Ghimire ◽  
Shichang Kang ◽  
Wasim Sajjad ◽  
Barkat Ali ◽  
Lekhendra Tripathee ◽  
...  

This study presents features of airborne culturable bacteria and fungi from three different sites (Lanzhou; LZ; 1520 m ASL, Lhasa; LS; 3640 m ASL and Qomolangma; ZF; 4276 m ASL) representing urban (LZ and LS) and remote sites (ZF) over the Tibetan Plateau (TP). Total suspended particle (TSP) samples were collected with an air sampler (Laoying 2030, China) on a quartz filter. Community structures of bacteria and fungi were studied and compared among three different locations. The average levels of bacterial load in the outdoor air ranged from approximately 8.03 × 101 to 3.25 × 102 CFU m–3 (Colony forming unit per m3). However, the average levels of fungal loads ranged from approximately 3.88 × 100 to 1.55 × 101 CFU m−3. Bacterial load was one magnitude higher at urban sites LZ (2.06 × 102–3.25 × 102 CFU m−3) and LS (1.96 × 102–3.23 × 102 CFU m−3) compared to remote sites ZF (8.03 × 101–9.54 × 101 CFU m−3). Similarly, the maximum fungal load was observed in LZ (1.02 × 101–1.55 × 101 CFU m−3) followed by LS (1.03 × 101–1.49 × 101 CFU m−3) and ZF (3.88 × 100–6.26 × 100 CFU m−3). However, the maximum microbial concentration was observed on the same day of the month, corresponding to a high dust storm in Lanzhou during the sampling period. The reported isolates were identified by phylogenetic analysis of 16S rRNA genes for bacteria and ITS sequences for fungi amplified from directly extracted DNA. Bacterial isolates were mostly associated with Proteobacteria, Eurotiomycetes and Bacillus, whereas fungal isolates were mostly Aspergillus and Alternaria. Overall, this is a pioneer study that provides information about the airborne microbial concentration and composition of three sites over the TP region depending on environmental parameters. This study provided preliminary insight to carry out more advanced and targeted analyses of bioaerosol in the sites presented in the study.


2020 ◽  
Vol 125 (4) ◽  
Author(s):  
Meta Francis Justine ◽  
Kaiwen Pan ◽  
Nambajimana Jean de Dieu ◽  
Fidele Karamage ◽  
Zebene Tadesse ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Bin Wang ◽  
Ben Niu ◽  
Xiaojie Yang ◽  
Song Gu

We examined the response of soil CO2emissions to warming and environmental control mechanisms in an alpine swamp meadow ecosystem on the Tibetan Plateau. Experimental warming treatments were performed in an alpine swamp meadow ecosystem using two open-top chambers (OTCs) 40 cm (OA) and 80 cm (OB) tall. The results indicate that temperatures were increased by 2.79°C in OA and 4.96°C in OB, that ecosystem CO2efflux showed remarkable seasonal variations in the control (CK) and the two warming treatments, and that all three systems yielded peak values in August of 123.6, 142.3, and 166.2 g C m−2 month−1. Annual CO2efflux also showed a gradual upward trend with increased warming: OB (684.1 g C m−2 year−1) > OA (580.7 g C m−2 year−1) > CK (473.3 g C m−2 year−1). Path analysis revealed that the 5 cm depth soil temperature was the most important environmental factor affecting soil CO2emissions in the three systems.


2014 ◽  
Vol 102 (4) ◽  
pp. 1058-1071 ◽  
Author(s):  
Jeanette Whitaker ◽  
Nicholas Ostle ◽  
Andrew T. Nottingham ◽  
Adan Ccahuana ◽  
Norma Salinas ◽  
...  

mSystems ◽  
2016 ◽  
Vol 1 (3) ◽  
Author(s):  
Cristina M. Herren ◽  
Kyle C. Webert ◽  
Katherine D. McMahon

ABSTRACT There are many reasons why microbial community composition is difficult to model. For example, the high diversity and high rate of change of these communities make it challenging to identify causes of community turnover. Furthermore, the processes that shape community composition can be either deterministic, which cause communities to converge upon similar compositions, or stochastic, which increase variability in community composition. However, modeling microbial community composition is possible only if microbes show repeatable responses to extrinsic forcing. In this study, we hypothesized that environmental stress acts as a deterministic force that shapes microbial community composition. Other studies have investigated if disturbances can alter microbial community composition, but relatively few studies ask about the repeatability of the effects of disturbances. Mechanistic models implicitly assume that communities show consistent responses to stressors; here, we define and quantify microbial variability to test this assumption. A central pursuit of microbial ecology is to accurately model changes in microbial community composition in response to environmental factors. This goal requires a thorough understanding of the drivers of variability in microbial populations. However, most microbial ecology studies focus on the effects of environmental factors on mean population abundances, rather than on population variability. Here, we imposed several experimental disturbances upon periphyton communities and analyzed the variability of populations within disturbed communities compared with those in undisturbed communities. We analyzed both the bacterial and the diatom communities in the periphyton under nine different disturbance regimes, including regimes that contained multiple disturbances. We found several similarities in the responses of the two communities to disturbance; all significant treatment effects showed that populations became less variable as the result of environmental disturbances. Furthermore, multiple disturbances to these communities were often interactive, meaning that the effects of two disturbances could not have been predicted from studying single disturbances in isolation. These results suggest that environmental factors had repeatable effects on populations within microbial communities, thereby creating communities that were more similar as a result of disturbances. These experiments add to the predictive framework of microbial ecology by quantifying variability in microbial populations and by demonstrating that disturbances can place consistent constraints on the abundance of microbial populations. Although models will never be fully predictive due to stochastic forces, these results indicate that environmental stressors may increase the ability of models to capture microbial community dynamics because of their consistent effects on microbial populations. IMPORTANCE There are many reasons why microbial community composition is difficult to model. For example, the high diversity and high rate of change of these communities make it challenging to identify causes of community turnover. Furthermore, the processes that shape community composition can be either deterministic, which cause communities to converge upon similar compositions, or stochastic, which increase variability in community composition. However, modeling microbial community composition is possible only if microbes show repeatable responses to extrinsic forcing. In this study, we hypothesized that environmental stress acts as a deterministic force that shapes microbial community composition. Other studies have investigated if disturbances can alter microbial community composition, but relatively few studies ask about the repeatability of the effects of disturbances. Mechanistic models implicitly assume that communities show consistent responses to stressors; here, we define and quantify microbial variability to test this assumption. Author Video: An author video summary of this article is available.


Sign in / Sign up

Export Citation Format

Share Document