scholarly journals Spatial patterns in soil organic matter dynamics are shaped by mycorrhizosphere interactions in a treeline forest

2019 ◽  
Vol 447 (1-2) ◽  
pp. 521-535
Author(s):  
Nina L. Friggens ◽  
Thomas J. Aspray ◽  
Thomas C. Parker ◽  
Jens-Arne Subke ◽  
Philip A. Wookey

Abstract Aims In the Swedish sub-Arctic, mountain birch (Betula pubescens ssp. czerepanovii) forests mediate rapid soil C cycling relative to adjacent tundra heaths, but little is known about the role of individual trees within forests. Here we investigate the spatial extent over which trees influence soil processes. Methods We measured respiration, soil C stocks, root and mycorrhizal productivity and fungi:bacteria ratios at fine spatial scales along 3 m transects extending radially from mountain birch trees in a sub-Arctic ecotone forest. Root and mycorrhizal productivity was quantified using in-growth techniques and fungi:bacteria ratios were determined by qPCR. Results Neither respiration, nor root and mycorrhizal production, varied along transects. Fungi:bacteria ratios, soil organic C stocks and standing litter declined with increasing distance from trees. Conclusions As 3 m is half the average size of forest gaps, these findings suggest that forest soil environments are efficiently explored by roots and associated mycorrhizal networks of B. pubescens. Individual trees exert influence substantially away from their base, creating more uniform distributions of root, mycorrhizal and bacterial activity than expected. However, overall rates of soil C accumulation do vary with distance from trees, with potential implications for spatio-temporal soil organic matter dynamics and net ecosystem C sequestration.

Soil Research ◽  
2000 ◽  
Vol 38 (2) ◽  
pp. 371 ◽  
Author(s):  
G. D. Schwenke ◽  
L. Ayre ◽  
D. R. Mulligan ◽  
L. C. Bell

Concern over the long-term sustainability of post-mining ecosystems at Weipa (North Queensland, Australia) led to investigations of soil organic matter dynamics, a key process linking soil and vegetation development in maintenance-free systems. Paper I of this series examined the short-term effects of rehabilitation operations on soil organic matter. Here, we assess the medium-term development of post-rehabilitation soil organic matter quantity and quality using mine soil chronosequences of up to 22 years post-rehabilitation at Weipa. Soils had been respread either immediately after stripping or after stripped soil had been stockpiled for several years. Sites surveyed were revegetated with native tree and shrub species, forestry (Khaya senegalensis), or pasture (Brachiaria decumbens/Stylosanthes spp.). Three areas of undisturbed native forest were included for comparison. Compared with the undisturbed forest, rehabilitated soils were shallower and more compacted, contained more gravel, and, as a result of topsoil–subsoil mixing, stored less organic matter in the surface soil. Rehabilitated sites respread with stockpiled soil were more compacted and lower in all quantitative and qualitative measures of organic matter than freshly replaced soils. With time, organic matter accumulated in the surface soil under all vegetation types at rates of up to 1.25 t C/ha.year, but new equilibrium levels were yet to be reached. Accumulated organic matter was mostly associated with clay and silt-sized particles, indicating effective cycling of litter to humus. Nitrogen mineralisation capacity increased with time under all vegetation types. The incidence of fire led to increased total and light-fraction organic C, but this was probably as charcoal C. Sites where volunteer grass biomass was reduced pre-planting by late-season stripping or disc-ploughing accumulated less organic C. To optimise post-mining soil organic matter development, we recommend that soil stockpiling be avoided, that more volunteer grasses be retained to ensure continuity of organic inputs, and that attention be focussed on minimising soil compaction and gravel incorporation—both permanent limitations to plant growth.


2021 ◽  
Author(s):  
Mark A. Bradford ◽  
Stephen A. Wood ◽  
Ethan T. Addicott ◽  
Eli P. Fenichel ◽  
Nicholas Fields ◽  
...  

2001 ◽  
Vol 81 (1) ◽  
pp. 21-31 ◽  
Author(s):  
E G Gregorich ◽  
C F Drury ◽  
J A Baldock

Legume-based cropping systems could help to increase crop productivity and soil organic matter levels, thereby enhancing soil quality, as well as having the additional benefit of sequestering atmospheric C. To evaluate the effects of 35 yr of maize monoculture and legume-based cropping on soil C levels and residue retention, we measured organic C and 13C natural abundance in soils under: fertilized and unfertilized maize (Zea mays L.), both in monoculture and legume-based [maize-oat (Avena sativa L.)-alfalfa (Medicago sativa L.)-alfalfa] rotations; fertilized and unfertilized systems of continuous grass (Poa pratensis L.); and under forest. Solid state 13C nuclear magnetic resonance (NMR) was used to chemically characterize the organic matter in plant residues and soils. Soils (70-cm depth) under maize cropping had about 30-40% less C, and those under continuous grass had about 16% less C, than those under adjacent forest. Qualitative differences in crop residues were important in these systems, because quantitative differences in net primary productivity and C inputs in the different agroecosystems did not account for observed differences in total soil C. Cropping sequence (i.e., rotation or monoculture) had a greater effect on soil C levels than application of fertilizer. The difference in soil C levels between rotation and monoculture maize systems was about 20 Mg C ha-1. The effects of fertilization on soil C were small (~6 Mg C ha-1), and differences were observed only in the monoculture system. The NMR results suggest that the chemical composition of organic matter was little affected by the nature of crop residues returned to the soil. The total quantity of maize-derived soil C was different in each system, because the quantity of maize residue returned to the soil was different; hence the maize-derived soil C ranged from 23 Mg ha-1 in the fertilized and 14 Mg ha-1 in the unfertilized monoculture soils (i.e., after 35 maize crops) to 6-7 Mg ha-1 in both the fertilized and unfertilized legume-based rotation soils (i.e., after eight maize crops). The proportion of maize residue C returned to the soil and retained as soil organic C (i.e., Mg maize-derived soil C/Mg maize residue) was about 14% for all maize cropping systems. The quantity of C3-C below the plow layer in legume-based rotation was 40% greater than that in monoculture and about the same as that under either continuous grass or forest. The soil organic matter below the plow layer in soil under the legume-based rotation appeared to be in a more biologically resistant form (i.e., higher aromatic C content) compared with that under monoculture. The retention of maize residue C as soil organic matter was four to five times greater below the plow layer than that within the plow layer. We conclude that residue quality plays a key role in increasing the retention of soil C in agroecosystems and that soils under legume-based rotation tend to be more “preservative” of residue C inputs, particularly from root inputs, than soils under monoculture. Key words: Soil carbon, 13C natural abundance, 13C nuclear magnetic resonance, maize cropping, legumes, root carbon


2004 ◽  
Vol 50 (8) ◽  
pp. 1211-1218 ◽  
Author(s):  
Shinya Funakawa ◽  
Iwao Nakamura ◽  
Kanat Akshalov ◽  
Takashi Kosaki

Sign in / Sign up

Export Citation Format

Share Document