scholarly journals Plant’s gypsum affinity shapes responses to specific edaphic constraints without limiting responses to other general constraints

2021 ◽  
Author(s):  
Ricardo Sánchez-Martín ◽  
José I. Querejeta ◽  
Jordi Voltas ◽  
Juan Pedro Ferrio ◽  
Iván Prieto ◽  
...  
Keyword(s):  
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nima Afkhami-Jeddi ◽  
Henry Cohn ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with U(1)c×U(1)c symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.


1983 ◽  
Vol 6 (3-4) ◽  
pp. 333-374
Author(s):  
H.J.M. Goeman ◽  
L.P.J. Groenewegen ◽  
H.C.M. Kleijn ◽  
G. Rozenberg

This paper continues the investigation froll1 [Goeman et al.] concerning the use of sets of places of a Petri net as additional (to input places) constraints for granting concession. Now interpretations of more general constraints are considered and expressed as Boolean expressions. This gives rise to various classes of constrained Petri nets. These are compared in the language theoretical framework introduced in [Goeman et al.]. An upperbound for the language defining power is found in the class of context-free programmed languages.


1997 ◽  
Vol 06 (04) ◽  
pp. 423-450 ◽  
Author(s):  
Baher A. El-Geresy ◽  
Alia I. Abdelmoty

In this paper we propose a general approach for reasoning in space. The approach is composed of a set of two general constraints to govern the spatial relationships between objects in space, and two rules to propagate relationships between those objects. The approach is based on a novel representation of the topology of the space as a connected set of components using a structure called adjacency matrix which can capture the topology of objects of different complexity in any space dimension. The formalism is used to explain spatial compositions resulting in indefinite and definite relations and it is shown to be applicable to reasoning in the temporal domain. The main contribution of the formalism is that it provides means for constructing composition tables for objects with arbitrary complexity in any space dimension. A new composition table between spatial objects of different types is presented. A major advantage of the method is that reasoning between objects of any complexity can be achieved in a defined limited number of steps. Hence, the incorporation of spatial reasoning mechanisms in spatial information systems becomes possible.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Aleix Gimenez-Grau ◽  
Pedro Liendo

Abstract We apply the numerical conformal bootstrap to correlators of Coulomb and Higgs branch operators in 4d$$ \mathcal{N} $$ N = 2 superconformal theories. We start by revisiting previous results on single correlators of Coulomb branch operators. In particular, we present improved bounds on OPE coefficients for some selected Argyres-Douglas models, and compare them to recent work where the same cofficients were obtained in the limit of large r charge. There is solid agreement between all the approaches. The improved bounds can be used to extract an approximate spectrum of the Argyres-Douglas models, which can then be used as a guide in order to corner these theories to numerical islands in the space of conformal dimensions. When there is a flavor symmetry present, we complement the analysis by including mixed correlators of Coulomb branch operators and the moment map, a Higgs branch operator which sits in the same multiplet as the flavor current. After calculating the relevant superconformal blocks we apply the numerical machinery to the mixed system. We put general constraints on CFT data appearing in the new channels, with particular emphasis on the simplest Argyres-Douglas model with non-trivial flavor symmetry.


2018 ◽  
Vol 2018 (5) ◽  
Author(s):  
Manfred Lindner ◽  
Farinaldo S. Queiroz ◽  
Werner Rodejohann ◽  
Xun-Jie Xu

1976 ◽  
Vol 7 (3) ◽  
pp. 273-279 ◽  
Author(s):  
Harold P. Klein

1999 ◽  
Vol 138 (3) ◽  
pp. 545-546 ◽  
Author(s):  
G. Ghisellini ◽  
D. Lazzati ◽  
S. Campana

1973 ◽  
Vol 95 (2) ◽  
pp. 525-532 ◽  
Author(s):  
M. Huang ◽  
A. H. Soni

Using graph theory and Polya’s theory of counting, the present paper performs structural synthesis and analysis of planar and three-dimensional kinematic chains. The Section 2 of the paper develops a mathematical model that permits one to perform structural analysis and synthesis of planar kinematic chains with kinematic elements such as revolute pairs, cam pairs, springs, belt-pulley, piston-cylinder, and gears. The theory developed is applied to enumerate eight-link kinematic chains with these kinematic elements. The Section 3 of the paper develops a mathematical model that permits one to perform structural analysis and synthesis of multi-loop spatial kinematic chains with higher and lower kinematic pairs. The theory developed is applied to enumerate all possible two-loop kinematic chains with or without general constraints.


Sign in / Sign up

Export Citation Format

Share Document