scholarly journals An artificial neural network based method to uncover the value-of-travel-time distribution

2020 ◽  
Author(s):  
Sander van Cranenburgh ◽  
Marco Kouwenhoven

Abstract This study proposes a novel Artificial Neural Network (ANN) based method to derive the Value-of-Travel-Time (VTT) distribution. The strength of this method is that it is possible to uncover the VTT distribution (and its moments) without making assumptions about the shape of the distribution or the error terms, while being able to incorporate covariates and taking the panel nature of stated choice data into account. To assess how well the proposed ANN-based method works in terms of being able to recover the VTT distribution, we first conduct a series of Monte Carlo experiments. After having demonstrated that the method works on Monte Carlo data, we apply the method to data from the 2009 Norwegian VTT study. Finally, we extensively cross-validate our method by comparing it with a series of state-of-the-art discrete choice models and nonparametric methods. Based on the promising results we have obtained, we believe that there is a place for ANN-based methods in future VTT studies.

2012 ◽  
Author(s):  
Norhisham Bakhary

Artificial Neural Network (ANN) telah digunakan dengan meluas bagi tujuan mengesan kerosakan dalam struktur menggunakan data–data mod dari gegaran. Walau bagaimanapun, ketidakpastian yang wujud dalam model unsur terhingga dan data dari lapangan yang tidak dapat dielakkan boleh menyebabkan kesilapan dalam meramalkan magnitud dan lokasi kerosakan. Dalam kajian ini kaedah statistik digunakan untuk mengambil kira ketidakpastian ini. ANN digunakan untuk meramalkan parameter–parameter kekukuhan dari frekuensi dan mod bentuk bagi sesebuah struktur. Untuk mengambil kira ketidakpastian dalam ramalan, kaedah statistik digunakan di mana kaedah Rossenblueth point estimation diperbandingkan dengan kaedah Monte Carlo diaplikasikan bagi mengambil kira ketidakpastian ini. Keputusan menunjukkan bahawa dengan mengambil kira ketidakpastian dalam membuat ramalan menggunakan ANN, kerosakan boleh diramalkan pada tahap keyakinan yang tinggi. Kata kunci: Artificial neural network; ketidakpastian; kesilapan rawak Artificial Neural Network (ANN) has been widely applied to detect damages in structures based on structural vibration modal parameters. However, uncertainties that inevitably exist in finite element model and measured vibration data might lead to false or unreliable prediction of structural damage. In this study, a statistical approach is proposed to include the effect of uncertainties in the ANN algorithm for damage prediction. ANN is used to predict the stiffness parameters of structures from measured structural vibration frequencies and mode shapes. Uncertainties in the measured data and finite element model of the structure are considered in the prediction. The statistics of the identified parameters are determined using Rossenblueth’s point estimation method and verified by Monte Carlo simulation. The results show that by considering these uncertainties in the ANN model, the damages can be detected with a higher confidence level. Key words: Artificial neural network; uncertainties; random error


2019 ◽  
Vol 12 (3) ◽  
pp. 145 ◽  
Author(s):  
Epyk Sunarno ◽  
Ramadhan Bilal Assidiq ◽  
Syechu Dwitya Nugraha ◽  
Indhana Sudiharto ◽  
Ony Asrarul Qudsi ◽  
...  

2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2020 ◽  
Vol 38 (2A) ◽  
pp. 255-264
Author(s):  
Hanan A. R. Akkar ◽  
Sameem A. Salman

Computer vision and image processing are extremely necessary for medical pictures analysis. During this paper, a method of Bio-inspired Artificial Intelligent (AI) optimization supported by an artificial neural network (ANN) has been widely used to detect pictures of skin carcinoma. A Moth Flame Optimization (MFO) is utilized to educate the artificial neural network (ANN). A different feature is an extract to train the classifier. The comparison has been formed with the projected sample and two Artificial Intelligent optimizations, primarily based on classifier especially with, ANN-ACO (ANN training with Ant Colony Optimization (ACO)) and ANN-PSO (training ANN with Particle Swarm Optimization (PSO)). The results were assessed using a variety of overall performance measurements to measure indicators such as Average Rate of Detection (ARD), Average Mean Square error (AMSTR) obtained from training, Average Mean Square error (AMSTE) obtained for testing the trained network, the Average Effective Processing Time (AEPT) in seconds, and the Average Effective Iteration Number (AEIN). Experimental results clearly show the superiority of the proposed (ANN-MFO) model with different features.


Sign in / Sign up

Export Citation Format

Share Document