On natural density, orthomodular lattices, measure algebras and non-distributive $$L^p$$ L p spaces

Positivity ◽  
2015 ◽  
Vol 20 (2) ◽  
pp. 399-412
Author(s):  
Jarno Talponen
Author(s):  
E. K. R Nagarajan ◽  
D. Umadevi

Studia Logica ◽  
2021 ◽  
Author(s):  
D. Fazio ◽  
A. Ledda ◽  
F. Paoli

AbstractThe variety of (pointed) residuated lattices includes a vast proportion of the classes of algebras that are relevant for algebraic logic, e.g., $$\ell $$ ℓ -groups, Heyting algebras, MV-algebras, or De Morgan monoids. Among the outliers, one counts orthomodular lattices and other varieties of quantum algebras. We suggest a common framework—pointed left-residuated $$\ell $$ ℓ -groupoids—where residuated structures and quantum structures can all be accommodated. We investigate the lattice of subvarieties of pointed left-residuated $$\ell $$ ℓ -groupoids, their ideals, and develop a theory of left nuclei. Finally, we extend some parts of the theory of join-completions of residuated $$\ell $$ ℓ -groupoids to the left-residuated case, giving a new proof of MacLaren’s theorem for orthomodular lattices.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 164
Author(s):  
Songsong Dai

This paper studies rough approximation via join and meet on a complete orthomodular lattice. Different from Boolean algebra, the distributive law of join over meet does not hold in orthomodular lattices. Some properties of rough approximation rely on the distributive law. Furthermore, we study the relationship among the distributive law, rough approximation and orthomodular lattice-valued relation.


1965 ◽  
Vol 17 ◽  
pp. 40-51 ◽  
Author(s):  
D. J. Foulis

In (2, 3, 4, and 5), the author has established a connection between orthomodular lattices and Baer *-semigroups. In brief, the connection is as follows. The lattice of closed projections of any Baer *-semigroup forms an orthomodular lattice. Conversely, if L is any orthomodular lattice, there exists a Baer *-semigroup S which co-ordinatizes L in the sense that L is isomorphic to the lattice of closed projections in S. In this note we shall assume that the reader is familiar with the results and the notation of the quoted papers.


2017 ◽  
Vol 18 (2) ◽  
pp. 685 ◽  
Author(s):  
Ivan Chajda ◽  
Helmut Länger

1990 ◽  
Vol 189 ◽  
Author(s):  
Johanna B. Salsman

ABSTRACTAs part of the research effort on investigating the effects of microwave energy absorption on the chemical and physical properties of minerals and ores, the Bureau of Mines, Tuscaloosa Research Center has developed a technique of measuring the dielectric constant and loss tangent of minerals at the common microwave heating frequencies. The objective was to establish a reliable data base to aid in predicting the effects of microwave heating on minerals.In this phase of microwave research, the Bureau measured the dielectric properties of powdered minerals with medium to high electrical conductivities (a ≥ 0.02 Mho/m) in the frequency range of 300 MHz to 3 GHz using an open-ended coaxial line probe connected to an HP 8753A network analyzer. Since the minerals were prepared as powders, techniques were used to relate the measured dielectric properties of the powdered minerals to the dielectric properties of the mineral at Its theoretical or natural density. Also, these measurements were performed as a function of temperature, from 25° to 325° C.The measured values of the dielectric constants and loss tangents using this method were accurate within ±5 percent. This report describes the method of measurement and discusses the results of the Bureau's investigations into dielectric properties of minerals.


Sign in / Sign up

Export Citation Format

Share Document