scholarly journals Dirichlet Boundary Conditions for Degenerate and Singular Nonlinear Parabolic Equations

2017 ◽  
Vol 47 (2) ◽  
pp. 151-168 ◽  
Author(s):  
Fabio Punzo ◽  
Marta Strani
2013 ◽  
Vol 143 (6) ◽  
pp. 1185-1208 ◽  
Author(s):  
Rosaria Di Nardo ◽  
Filomena Feo ◽  
Olivier Guibé

We consider a general class of parabolic equations of the typewith Dirichlet boundary conditions and with a right-hand side belonging to L1 + Lp′ (W−1, p′). Using the framework of renormalized solutions we prove uniqueness results under appropriate growth conditions and Lipschitz-type conditions on a(u, ∇u), K(u) and H(∇u).


2001 ◽  
Vol 08 (01) ◽  
pp. 19-27 ◽  
Author(s):  
R. F. Streater

We study coupled nonlinear parabolic equations for a fluid described by a material density ρ and a temperature Θ, both functions of space and time. In one dimension, we find some stationary solutions corresponding to fixing the temperature on the boundary, with no-escape boundary conditions for the material. For the special case, where the temperature on the boundary is the same at both ends, the linearized equations for small perturbations about a stationary solution at uniform temperature and density are derived; they are subject to boundary conditions, Dirichlet for Θ and no-flow conditions for the material. The spectrum of the generator L of time evolution, regarded as an operator on L2[0,1], is shown to be real, discrete and non-positive, even though L is not self-adjoint. This result is necessary for the stability of the stationary state, but might not be sufficient. The problem lies in the fact that L is not a sectorial operator, since its numerical range is ℂ.


Sign in / Sign up

Export Citation Format

Share Document