The highly efficient NDH-dependent photosystem I cyclic electron flow pathway in the marine angiosperm Zostera marina

2020 ◽  
Vol 144 (1) ◽  
pp. 49-62
Author(s):  
Ying Tan ◽  
Quan Sheng Zhang ◽  
Wei Zhao ◽  
Zhe Liu ◽  
Ming Yu Ma ◽  
...  
2014 ◽  
Vol 83 ◽  
pp. 194-199 ◽  
Author(s):  
Teena Tongra ◽  
Sudhakar Bharti ◽  
Anjana Jajoo

1993 ◽  
Vol 103 (1) ◽  
pp. 171-180 ◽  
Author(s):  
L. Yu ◽  
J. Zhao ◽  
U. Muhlenhoff ◽  
D. A. Bryant ◽  
J. H. Golbeck

2010 ◽  
Vol 22 (1) ◽  
pp. 221-233 ◽  
Author(s):  
Aaron K. Livingston ◽  
Jeffrey A. Cruz ◽  
Kaori Kohzuma ◽  
Amit Dhingra ◽  
David M. Kramer

1984 ◽  
Vol 39 (5) ◽  
pp. 351-353 ◽  
Author(s):  
Stuart M. Ridley ◽  
Peter Horton

Diuron (DCMU) induces the photodestruction of pigments, which is the initial herbicidal symptom. As a working hypothesis, it is proposed that this symptom can only be produced when the herbicide dose is sufficiently high to inhibit not only photosystem II electron transport almost completely, but also inhibit (through over oxidation) the natural cyclic electron flow associated with photosystem I as well. Using freshly prepared chloroplasts, studies of DCMU-induced fluorescence changes, and dose responses for inhibition of electron transport, have been compared with a dose response for the photodestruction of pigments in chloroplasts during 24 h illumination. Photodestruction of pigments coincides with the inhibition of cyclic flow.


Sign in / Sign up

Export Citation Format

Share Document