cyclic electron flow
Recently Published Documents


TOTAL DOCUMENTS

277
(FIVE YEARS 40)

H-INDEX

48
(FIVE YEARS 7)

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 60
Author(s):  
Lyubov Yudina ◽  
Ekaterina Sukhova ◽  
Maxim Mudrilov ◽  
Vladimir Nerush ◽  
Anna Pecherina ◽  
...  

LED illumination can have a narrow spectral band; its intensity and time regime are regulated within a wide range. These characteristics are the potential basis for the use of a combination of LEDs for plant cultivation because light is the energy source that is used by plants as well as the regulator of photosynthesis, and the regulator of other physiological processes (e.g., plant development), and can cause plant damage under certain stress conditions. As a result, analyzing the influence of light spectra on physiological and growth characteristics during cultivation of different plant species is an important problem. In the present work, we investigated the influence of two variants of LED illumination (red light at an increased intensity, the “red” variant, and blue light at an increased intensity, the “blue” variant) on the parameters of photosynthetic dark and light reactions, respiration rate, leaf reflectance indices, and biomass, among other factors in lettuce (Lactuca sativa L.). The same light intensity (about 180 µmol m−2s−1) was used in both variants. It was shown that the blue illumination variant increased the dark respiration rate (35–130%) and cyclic electron flow around photosystem I (18–26% at the maximal intensity of the actinic light) in comparison to the red variant; the effects were dependent on the duration of cultivation. In contrast, the blue variant decreased the rate of the photosynthetic linear electron flow (13–26%) and various plant growth parameters, such as final biomass (about 40%). Some reflectance indices (e.g., the Zarco-Tejada and Miller Index, an index that is related to the core sizes and light-harvesting complex of photosystem I), were also strongly dependent on the illumination variant. Thus, our results show that the red illumination variant contributes a great deal to lettuce growth; in contrast, the blue variant contributes to stress changes, including the activation of cyclic electron flow around photosystem I.


Author(s):  
Donghee Hoh ◽  
Isaac Osei-Bonsu ◽  
Abhijnan Chattopadhyay ◽  
Atsuko Kanazawa ◽  
Nicholas Fisher ◽  
...  

The work demonstrates the use of detailed, high-throughput phenotyping to generate and test mechanistic models to explain the genetic diversity of photosynthetic responses to abiotic stress. We assessed a population of recombinant inbred lines (RILs) of cowpea (Vigna unguiculata. (L.) Walp.) with significant differences in a range of photosynthetic responses to chilling. We found well-defined, colocalized (overlapping) QTL intervals for photosynthetic parameters, suggesting linkages among the redox states of Q, the thylakoid pmf, through effects on cyclic electron flow and photodamage to PSII. We propose that these genetic variations optimize photosynthesis in the tolerant lines under low temperatures, preventing recombination reactions within Photosystem II that can lead to deleterious O production. By contrast, we did not observe linkages to PSI redox state, PSI photodamage or ATP synthase activity, or nyctinastic (diurnally controlled) leaf movements, likely indicating that several proposed models likely do not contribute to the genetic control of photosynthesis at low temperature in our mapping panel. The identified QTL intervals include a range of potential causative genetic components, with direct applications to breeding of photosynthesis for more climate-resilient productivity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Selma Mlinarić ◽  
Lidija Begović ◽  
Neven Tripić ◽  
Antonija Piškor ◽  
Vera Cesar

The Japanese knotweed (Reynoutria japonica Houtt.) is considered as one of the most aggressive and highly successful invasive plants with a negative impact on invaded habitats. Its uncontrolled expansion became a significant threat to the native species throughout Europe. Due to its extensive rhizome system, rapid growth, and allelopathic activity, it usually forms monocultures that negatively affect the nearby vegetation. The efficient regulation of partitioning and utilization of energy in photosynthesis enables invasive plants to adapt rapidly a variety of environmental conditions. Therefore, we aimed to determine the influence of light conditions on photosynthetic reactions in the Japanese knotweed. Plants were grown under two different light regimes, namely, constant low light (CLL, 40 μmol/m2/s) and fluctuating light (FL, 0–1,250 μmol/m2/s). To evaluate the photosynthetic performance, the direct and modulated chlorophyll a fluorescence was measured. Plants grown at a CLL served as control. The photosynthetic measurements revealed better photosystem II (PSII) stability and functional oxygen-evolving center of plants grown in FL. They also exhibited more efficient conversion of excitation energy to electron transport and an efficient electron transport beyond the primary electron acceptor QA, all the way to PSI. The enhanced photochemical activity of PSI suggested the formation of a successful adaptive mechanism by regulating the distribution of excitation energy between PSII and PSI to minimize photooxidative damage. A faster oxidation at the PSI side most probably resulted in the generation of the cyclic electron flow around PSI. Besides, the short-term exposure of FL-grown knotweeds to high light intensity increased the yield induced by downregulatory processes, suggesting that the generation of the cyclic electron flow protected PSI from photoinhibition.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thilo Rühle ◽  
Marcel Dann ◽  
Bennet Reiter ◽  
Danja Schünemann ◽  
Belen Naranjo ◽  
...  

AbstractIn plants, inactivation of either of the thylakoid proteins PGR5 and PGRL1 impairs cyclic electron flow (CEF) around photosystem I. Because PGR5 is unstable in the absence of the redox-active PGRL1, but not vice versa, PGRL1 is thought to be essential for CEF. However, we show here that inactivation of PGRL2, a distant homolog of PGRL1, relieves the need for PGRL1 itself. Conversely, high levels of PGRL2 destabilize PGR5 even when PGRL1 is present. In the absence of both PGRL1 and PGRL2, PGR5 alters thylakoid electron flow and impairs plant growth. Consequently, PGR5 can operate in CEF on its own, and is the target of the CEF inhibitor antimycin A, but its activity must be modulated by PGRL1. We conclude that PGRL1 channels PGR5 activity, and that PGRL2 triggers the degradation of PGR5 when the latter cannot productively interact with PGRL1.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 606
Author(s):  
Hu Sun ◽  
Qi Shi ◽  
Shi-Bao Zhang ◽  
Wei Huang

Photosystem I (PSI) is the primary target of photoinhibition under fluctuating light (FL). Photosynthetic organisms employ alternative electron flows to protect PSI under FL. However, the understanding of the coordination of alternative electron flows under FL at temperature stresses is limited. To address this question, we measured the chlorophyll fluorescence, P700 redox state, and electrochromic shift signal in leaves of Dendrobium officinale exposed to FL at 42 °C, 25 °C, and 4 °C. Upon a sudden increase in illumination at 42 °C and 25 °C, the water–water cycle (WWC) consumed a significant fraction of the extra reducing power, and thus avoided an over-reduction of PSI. However, WWC was inactivated at 4 °C, leading to an over-reduction of PSI within the first seconds after light increased. Therefore, the role of WWC under FL is largely dependent on temperature conditions. After an abrupt increase in light intensity, cyclic electron flow (CEF) around PSI was stimulated at any temperature. Therefore, CEF and WWC showed different temperature responses under FL. Furthermore, the enhancement of CEF and WWC at 42 °C quickly generated a sufficient trans-thylakoid proton gradient (ΔpH). The inactivation of WWC at 4 °C was partially compensated for by an increased CEF activity. These findings indicate that CEF and WWC coordinate to protect PSI under FL at temperature stresses.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xinyi Wu ◽  
Jianqiang Wu ◽  
Yu Wang ◽  
Meiwen He ◽  
Mingming He ◽  
...  

AbstractIn plants and algae, PGR5-dependent cyclic electron flow (CEF) is an important regulator of acclimation to fluctuating environments, but how PGR5 participates in CEF is unclear. In this work, we analyzed two PGR5s in cucumber (Cucumis sativus L.) under different conditions and found that CsPGR5a played the dominant role in PGR5-dependent CEF. The results of yeast two-hybrid, biomolecular fluorescence complementation (BiFC), blue native PAGE, and coimmunoprecipitation (CoIP) assays showed that PGR5a interacted with PetC, Lhcb3, and PsaH. Furthermore, the intensity of the interactions was dynamic during state transitions, and the abundance of PGR5 attached to cyt b6f decreased during the transition from state 1 to state 2, which revealed that the function of PGR5a is related to the state transition. We proposed that PGR5 is a small mobile protein that functions when attached to protein complexes.


Sign in / Sign up

Export Citation Format

Share Document