Tunable fast–slow light conversion based on optomechanically induced absorption in a hybrid atom–optomechanical system

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Bin Chen ◽  
Hong-Wu Xing ◽  
Jian-Bin Chen ◽  
Hai-Bin Xue ◽  
Li-Li Xing
2013 ◽  
Vol 46 (2) ◽  
pp. 025501 ◽  
Author(s):  
Xiao-Gui Zhan ◽  
Liu-Gang Si ◽  
An-Shou Zheng ◽  
Xiaoxue Yang

2019 ◽  
Vol 27 (21) ◽  
pp. 30473 ◽  
Author(s):  
Cheng Jiang ◽  
Yuanshun Cui ◽  
Zhangyin Zhai ◽  
Hualing Yu ◽  
Xiaowei Li ◽  
...  

Author(s):  
Maryam Biag ◽  
Ammal Ghaffar ◽  
Muhammad Aslam Khan ◽  
Farooq Khan ◽  
Shanawer Niaz

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 698
Author(s):  
Qinghong Liao ◽  
Weida Bao ◽  
Xing Xiao ◽  
Wenjie Nie ◽  
Yongchun Liu

We theoretically investigate the optomechanically induced transparency (OMIT) phenomenon and the fast and slow light effects of a four-mode optomechanical system with the Kerr medium. The optomechanical system is composed of an array of three single-mode cavities and a mechanical oscillator. The three cavities are a passive cavity, a no-loss-gain cavity and a gain optical cavity, respectively. A Kerr medium is inserted in the passive cavity. We study the influence of the Kerr medium on the stability of the optomechanical system, and find that the stable regime of the optomechanical system can be adjusted by changing the Kerr coefficient. We demonstrate that the phenomenon of optomechanically induced transparency will appear when the Kerr medium exists in the optomechanical system and find that the frequency position of the absorption peak on the left increases linearly with the Kerr coefficient. In addition, we also investigate the fast and slow light effects in this system. The results show that we can control the fast and slow light by adjusting the Kerr coefficient, tunneling strength, and driving field strength. This study has potential application prospects in the fields of quantum optical devices and quantum information processing.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1074
Author(s):  
Huajun Chen

We theoretically investigate the optical output fields of a photonic-molecule optomechanical system in an optomechanically induced transparency (OMIT) regime, in which the optomechanical cavity is optically driven by a strong pump laser field and a weak probe laser field and the mechanical mode is driven by weak coherent phonon driving. The numerical simulations indicate that when the driven frequency of the phonon pump equals the frequency difference of the two laser fields, we show an enhancement OMIT where the probe transmission can exceed unity via controlling the driving amplitude and pump phase of the phonon driving. In addition, the phase dispersion of the transmitted probe field can be modified for different parametric regimes, which leads to a tunable delayed probe light transmission. We further study the group delay of the output probe field with numerical simulations, which can reach a tunable conversion from slow to fast light with the manipulation of the pump laser power, the ratio parameter of the two cavities, and the driving amplitude and phase of the weak phonon pump.


Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 384
Author(s):  
Yan-Na Zhao ◽  
Tie Wang ◽  
Dong-Yang Wang ◽  
Xue Han ◽  
Shou Zhang ◽  
...  

We investigate the optical amplification of the output field and fast-slow light effect in a three-mode cavity optomechanical system without rotating wave approximation and discuss two ways of realizing the optical amplification effect. Resorting to the Coulomb coupling between the nanomechanical resonators, the asymmetric double optomechanically induced amplification effect can be achieved by utilizing the counterrotating term. Moreover, we find a remarkable optical amplification effect and observe the prominent fast-slow light effect at the singular point since the introduction of mechanical gain. Meanwhile, the transmission rate of the output field is increased by four orders of magnitude and the group delay time can reach in the order of 105μs. Our work is of great significance for the potential applications of optomechanically induced amplification in quantum information processing and quantum precision measurement.


Sign in / Sign up

Export Citation Format

Share Document