kerr coefficient
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamed Alipour-Banaei ◽  
Farhad Mehdizadeh ◽  
Somaye Serajmohammadi

Abstract Using two nonlinear photonic crystal ring resonators we proposed and designed an all optical decoder. 2D 12 fold quasicrystal was used as the core section of the resonant rings. In order to make use of advantages of nonlinear Kerr effect, we put 24 dielectric rods between the core and outer shell of the resonant ring. The linear refractive index and nonlinear Kerr coefficient of these rods are n 0 = 1.4 and n 2 = 10−14 m2/W. In the proposed structure port I was used to switch the optical beams coming from BIAS between O1 and O2 output ports. The optical intensity required for performing the switching task is about 0.1 kW/μm2.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1017
Author(s):  
Seiji Fukushima ◽  
Kakeru Tokunaga ◽  
Takuya Morishita ◽  
Hiroki Higuchi ◽  
Yasushi Okumura ◽  
...  

The use of polymer-stabilized blue phase (PSBP) including a tolane-type liquid crystal was investigated to develop a voltage-controlled wavelength selective filter for wavelength-division-multiplexing optical fiber network. It was found that the tolane-type liquid crystal introduction can increase both a blue-phase temperature range and a Kerr coefficient. A Fabry–Perot etalon filled with PSBP functioned as a wavelength selective filter, as expected. The tuning wavelength range was 62 nm although peak transmission was not as high as expected. Numerical analysis suggested that light absorption in transparent electrodes may cause the issue. Minor change to the etalon structure will result in improved performance.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 698
Author(s):  
Qinghong Liao ◽  
Weida Bao ◽  
Xing Xiao ◽  
Wenjie Nie ◽  
Yongchun Liu

We theoretically investigate the optomechanically induced transparency (OMIT) phenomenon and the fast and slow light effects of a four-mode optomechanical system with the Kerr medium. The optomechanical system is composed of an array of three single-mode cavities and a mechanical oscillator. The three cavities are a passive cavity, a no-loss-gain cavity and a gain optical cavity, respectively. A Kerr medium is inserted in the passive cavity. We study the influence of the Kerr medium on the stability of the optomechanical system, and find that the stable regime of the optomechanical system can be adjusted by changing the Kerr coefficient. We demonstrate that the phenomenon of optomechanically induced transparency will appear when the Kerr medium exists in the optomechanical system and find that the frequency position of the absorption peak on the left increases linearly with the Kerr coefficient. In addition, we also investigate the fast and slow light effects in this system. The results show that we can control the fast and slow light by adjusting the Kerr coefficient, tunneling strength, and driving field strength. This study has potential application prospects in the fields of quantum optical devices and quantum information processing.


2020 ◽  
Author(s):  
David Moss

We experimentally characterize the third-order optical Kerr nonlinearity of BiOBr nanoflakes via Z-Scan technique.Strong nonlinear absorption as well as high Kerr nonlinearity (n2) are observed at both 800 nm and 1550 nm, with alarge nonlinear absorption coefficient on the order of 10-7 m/W and a high Kerr coefficient on the order of 10-14 m2/Wbeing measured.


Photonics ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 72
Author(s):  
Elena A. Anashkina ◽  
Maria P. Marisova ◽  
Alexey V. Andrianov ◽  
Rinat A. Akhmedzhanov ◽  
Rihards Murnieks ◽  
...  

Optical frequency comb (OFC) generators based on whispering gallery mode (WGM) microresonators have a massive potential to ensure spectral and energy efficiency in wavelength-division multiplexing (WDM) telecommunication systems. The use of silica microspheres for telecommunication applications has hardly been studied but could be promising. We propose, investigate, and optimize numerically a simple design of a silica microsphere-based OFC generator in the C-band with a free spectral range of 200 GHz and simulate its implementation to provide 4-channel 200 GHz spaced WDM data transmission system. We calculate microsphere characteristics such as WGM eigenfrequencies, dispersion, nonlinear Kerr coefficient with allowance for thermo-optical effects, and simulate OFC generation in the regime of a stable dissipative Kerr soliton. We show that by employing generated OFC lines as optical carriers for WDM data transmission, it is possible to ensure error-free data transmission with a bit error rate (BER) of 4.5 × 10−30, providing a total of 40 Gbit/s of transmission speed on four channels.


2020 ◽  
Vol 10 (14) ◽  
pp. 4904
Author(s):  
Mrinal Thakur ◽  
Justin Van Cleave

Electroabsorption in metallic nanoparticles within transparent dielectric media has been measured. In particular, gold nanoparticles in glass and subnanometer-size metallic domains in iodine doped nonconjugated conductive polymer have been studied. Measurements have been made for applied ac fields at 4 kHz, at a wavelength close to the onset of the surface plasmon resonance. The measured electroabsorption (imaginary part of χ(3) or Kerr coefficient) has a quadratic dependence on electric field. Its magnitudes were compared for different sizes of the metallic nanoparticles down to the subnanometer-size particles in iodine-doped nonconjugated conductive polymer. As in the case of quadratic electro-optic effect reported earlier, electroabsorption has approximately a 1/d3 dependence, d being the diameter of nanoparticle. This is consistent with existing theories on confined metallic systems.


2019 ◽  
Vol 9 (2) ◽  
pp. 232 ◽  
Author(s):  
Mrinal Thakur ◽  
Justin Van Cleave

The quadratic electro-optic effect/Kerr coefficients were measured for the first time for metal nanoparticles. In particular, gold nanoparticles in glass were studied. Measurements were made using the field-induced birefringence method at a wavelength near the onset of the surface plasmon resonance. The magnitudes of the Kerr coefficients for different sizes of gold nanoparticles in glass were measured and compared with that of subnanometer size metallic particles in non-conjugated conductive polymers. The magnitude of the Kerr coefficient was found to increase rapidly (about d−3) when the diameter, d, of the nanoparticles was decreased. This is consistent with the existing theories and understanding of nonlinear optics in metal nanoparticles. The results imply a broad range of new applications of metal nanoparticles in electro-optic switching/modulation, low-cost Kerr cells and other uses in optoelectronics.


Author(s):  
S. Zahedpour ◽  
J. K. Wahlstrand ◽  
H. M. Milchberg
Keyword(s):  

2016 ◽  
Vol 94 (2) ◽  
Author(s):  
Daniel B. S. Soh ◽  
Ryan Hamerly ◽  
Hideo Mabuchi

Sign in / Sign up

Export Citation Format

Share Document