The influence of mesoscopic flow on the P-wave attenuation and dispersion in a porous media permeated by aligned fractures

2013 ◽  
Vol 57 (3) ◽  
pp. 482-506 ◽  
Author(s):  
Jixin Deng ◽  
Shangxu Wang ◽  
Gengyang Tang ◽  
Jianguo Zhao ◽  
Xiangyang Li
Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. WA135-WA145 ◽  
Author(s):  
Fabian Krzikalla ◽  
Tobias M. Müller

Elastic upscaling of thinly layered rocks typically is performed using the established Backus averaging technique. Its poroelastic extension applies to thinly layered fluid-saturated porous rocks and enables the use of anisotropic effective medium models that are valid in the low- and high-frequency limits for relaxed and unrelaxed pore-fluid pressures, respectively. At intermediate frequencies, wave-induced interlayer flow causes attenuation and dispersion beyond that described by Biot’s global flow and microscopic squirt flow. Several models quantify frequency-dependent, normal-incidence P-wave propagation in layered poroelastic media but yield no prediction for arbitrary angles of incidence, or for S-wave-induced interlayer flow. It is shown that generalized models for P-SV-wave attenuation and dispersion as a result of interlayer flow can be constructed by unifying the anisotropic Backus limits with existing P-wave frequency-dependent interlayer flow models. The construction principle is exact and is based on the symmetry properties of the effective elastic relaxation tensor governing the pore-fluid pressure diffusion. These new theories quantify anisotropic P- and SV-wave attenuation and velocity dispersion. The maximum SV-wave attenuation is of the same order of magnitude as the maximum P-wave attenuation and occurs prominently around an angle of incidence of [Formula: see text]. For the particular case of a periodically layered medium, the theoretical predictions are confirmed through numerical simulations.


Geophysics ◽  
2010 ◽  
Vol 75 (5) ◽  
pp. 75A147-75A164 ◽  
Author(s):  
Tobias M. Müller ◽  
Boris Gurevich ◽  
Maxim Lebedev

One major cause of elastic wave attenuation in heterogeneous porous media is wave-induced flow of the pore fluid between heterogeneities of various scales. It is believed that for frequencies below [Formula: see text], the most important cause is the wave-induced flow between mesoscopic inhomogeneities, which are large compared with the typical individual pore size but small compared to the wavelength. Various laboratory experiments in some natural porous materials provide evidence for the presence of centimeter-scale mesoscopic heterogeneities. Laboratory and field measurements of seismic attenuation in fluid-saturated rocks provide indications of the role of the wave-induced flow. Signatures of wave-induced flow include the frequency and saturation dependence of P-wave attenuation and its associated velocity dispersion, frequency-dependent shear-wave splitting, and attenuation anisotropy. During the last four decades, numerous models for attenuation and velocity dispersion from wave-induced flow have been developed with varying degrees of rigor and complexity. These models can be categorized roughly into three groups ac-cording to their underlying theoretical framework. The first group of models is based on Biot’s theory of poroelasticity. The second group is based on elastodynamic theory where local fluid flow is incorporated through an additional hydrodynamic equation. Another group of models is derived using the theory of viscoelasticity. Though all models predict attenuation and velocity dispersion typical for a relaxation process, there exist differences that can be related to the type of disorder (periodic, random, space dimension) and to the way the local flow is incorporated. The differences manifest themselves in different asymptotic scaling laws for attenuation and in different expressions for characteristic frequencies. In recent years, some theoretical models of wave-induced fluid flow have been validated numerically, using finite-difference, finite-element, and reflectivity algorithms applied to Biot’s equations of poroelasticity. Application of theoretical models to real seismic data requires further studies using broadband laboratory and field measurements of attenuation and dispersion for different rocks as well as development of more robust methods for estimating dissipation attributes from field data.


2012 ◽  
Vol 9 (2) ◽  
pp. 115-126 ◽  
Author(s):  
Jixin Deng ◽  
Shouli Qu ◽  
Shixing Wang ◽  
Shengwang Zhu ◽  
Xuben Wang

Geophysics ◽  
2013 ◽  
Vol 78 (6) ◽  
pp. EN117-EN127 ◽  
Author(s):  
Tae-Hyuk Kwon ◽  
Jonathan B. Ajo-Franklin

The accumulation of biopolymers in porous media, produced by stimulating either indigenous bacteria or artificially introduced microbes, readily blocks pore throats and can effectively reduce bulk permeability. Such a microbial clogging treatment can be used for selective plugging of permeable zones in reservoirs and is considered a potentially promising approach to enhance sweep efficiency for microbial enhanced oil recovery (MEOR). Monitoring in situ microbial growth, biopolymer formation, and permeability reduction in the reservoir is critical for successful application of this MEOR approach. We examined the feasibility of using seismic signatures (P-wave velocity and attenuation) for monitoring the in situ accumulation of insoluble biopolymers in unconsolidated sediments. Column experiments, which involved stimulating the sucrose metabolism of Leuconostoc mesenteroides and production of the biopolymer dextran, were performed while monitoring changes in permeability and seismic response using the ultrasonic pulse transmission method. We observed that L. mesenteroides produced a viscous biopolymer in sucrose-rich media. Accumulated dextran, occupying 4%–6% pore volume after [Formula: see text] days of growth, reduced permeability more than one order of magnitude. A negligible change in P-wave velocity was observed, indicating no or minimal change in compressive stiffness of the unconsolidated sediment during biopolymer formation. The amplitude of the P-wave signals decreased [Formula: see text] after [Formula: see text] days of biopolymer production; spectral ratio analysis in the 0.4–0.8-MHz band showed an approximate 30%–50% increase in P-wave attenuation ([Formula: see text]) due to biopolymer production. A flow-induced loss mechanism related to the combined grain/biopolymer structure appeared to be the most plausible mechanism for causing the observed increase in P-wave attenuation in the ultrasonic frequency range. Because permeability reduction is also closely linked to biopolymer volume, P-wave attenuation in the ultrasonic frequency range appears to be an effective indicator for monitoring in situ biopolymer accumulation and permeability reduction and could provide a useful proxy for regions with altered transport properties.


Sign in / Sign up

Export Citation Format

Share Document