On the restricted connectivity of the arrangement graph

2017 ◽  
Vol 73 (8) ◽  
pp. 3669-3682 ◽  
Author(s):  
Eddie Cheng ◽  
Ke Qiu ◽  
Zhizhang Shen
Keyword(s):  
1998 ◽  
Vol 66 (4) ◽  
pp. 215-219 ◽  
Author(s):  
Wei-Kuo Chiang ◽  
Rong-Jaye Chen
Keyword(s):  

2019 ◽  
Vol 29 (03) ◽  
pp. 1950011
Author(s):  
Jiafei Liu ◽  
Shuming Zhou ◽  
Zhendong Gu ◽  
Yihong Wang ◽  
Qianru Zhou

The independent number and domination number are two essential parameters to assess the resilience of the interconnection network of multiprocessor systems which is usually modeled by a graph. The independent number, denoted by [Formula: see text], of a graph [Formula: see text] is the maximum cardinality of any subset [Formula: see text] such that no two elements in [Formula: see text] are adjacent in [Formula: see text]. The domination number, denoted by [Formula: see text], of a graph [Formula: see text] is the minimum cardinality of any subset [Formula: see text] such that every vertex in [Formula: see text] is either in [Formula: see text] or adjacent to an element of [Formula: see text]. But so far, determining the independent number and domination number of a graph is still an NPC problem. Therefore, it is of utmost importance to determine the number of independent and domination number of some special networks with potential applications in multiprocessor system. In this paper, we firstly resolve the exact values of independent number and upper and lower bound of domination number of the [Formula: see text]-graph, a common generalization of various popular interconnection networks. Besides, as by-products, we derive the independent number and domination number of [Formula: see text]-star graph [Formula: see text], [Formula: see text]-arrangement graph [Formula: see text], as well as three special graphs.


1998 ◽  
Vol 09 (02) ◽  
pp. 235-248 ◽  
Author(s):  
WEI-KUO CHIANG ◽  
RONG-JAYE CHEN

The star graph, though an attractive alternative to the hypercube, has a major drawback in that the number of nodes for an n-star graph must be n!, and thus considerably limits the choice of the number of nodes in the graph. In order to alleviate this drawback, the arrangement graph was recently proposed as a generalization of the star graph topology. The arrangement graph provides more flexibility than the star graph in choosing the number of nodes, but the degree of the resulting network may be very high. To overcome that disadvantage, this paper presents another generalization of the star graph, called the (n,k)-star graph. We examine some topological properties of the (n,k)-star graph from the graph-theory point of view. It is shown that two different types of edges in the (n,k)-star prevent it from being edge-symmetric, but edges in each class are essentially symmetric with respect to each other. Also, the diameter and the exact average distance of the (n,k)-star graph are derived. In addition, the fault-diameter for the (n,k)-star graph is shown to be at most the fault-free diameter plus three.


10.37236/3711 ◽  
2013 ◽  
Vol 20 (4) ◽  
Author(s):  
Bai Fan Chen ◽  
Ebrahim Ghorbani ◽  
Kok Bin Wong

The $(n,k)$-arrangement graph $A(n,k)$ is a graph with all the $k$-permutations of an $n$-element set as vertices where two $k$-permutations are adjacent if they agree in exactly $k-1$ positions. We introduce a cyclic decomposition for $k$-permutations and show that this gives rise to a very fine equitable partition of $A(n,k)$. This equitable partition can be employed to compute the complete set of eigenvalues (of the adjacency matrix) of $A(n,k)$. Consequently, we determine the eigenvalues of $A(n,k)$ for small values of $k$. Finally, we show that any eigenvalue of the Johnson graph $J(n,k)$ is an eigenvalue of $A(n,k)$ and that $-k$ is the smallest eigenvalue of $A(n,k)$ with multiplicity ${\cal O}(n^k)$ for fixed $k$.


2001 ◽  
Vol 47 (1) ◽  
pp. 73-86 ◽  
Author(s):  
Yuh-Shyan Chen ◽  
Tong-Ying Juang ◽  
Ying-Ying Shen

Sign in / Sign up

Export Citation Format

Share Document