scholarly journals Cyclic Decomposition of $k$-Permutations and Eigenvalues of the Arrangement Graphs

10.37236/3711 ◽  
2013 ◽  
Vol 20 (4) ◽  
Author(s):  
Bai Fan Chen ◽  
Ebrahim Ghorbani ◽  
Kok Bin Wong

The $(n,k)$-arrangement graph $A(n,k)$ is a graph with all the $k$-permutations of an $n$-element set as vertices where two $k$-permutations are adjacent if they agree in exactly $k-1$ positions. We introduce a cyclic decomposition for $k$-permutations and show that this gives rise to a very fine equitable partition of $A(n,k)$. This equitable partition can be employed to compute the complete set of eigenvalues (of the adjacency matrix) of $A(n,k)$. Consequently, we determine the eigenvalues of $A(n,k)$ for small values of $k$. Finally, we show that any eigenvalue of the Johnson graph $J(n,k)$ is an eigenvalue of $A(n,k)$ and that $-k$ is the smallest eigenvalue of $A(n,k)$ with multiplicity ${\cal O}(n^k)$ for fixed $k$.

2005 ◽  
Vol 13 (8) ◽  
pp. 3003-3015 ◽  
Author(s):  
Yovani Marrero-Ponce ◽  
Ricardo Medina-Marrero ◽  
Juan A. Castillo-Garit ◽  
Vicente Romero-Zaldivar ◽  
Francisco Torrens ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-21 ◽  
Author(s):  
Irene Sciriha ◽  
Stephanie Farrugia

The antiregular connected graph on r vertices is defined as the connected graph whose vertex degrees take the values of r−1 distinct positive integers. We explore the spectrum of its adjacency matrix and show common properties with those of connected threshold graphs, having an equitable partition with a minimal number r of parts. Structural and combinatorial properties can be deduced for related classes of graphs and in particular for the minimal configurations in the class of singular graphs.


2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Akbar Jahanbani ◽  
Seyed Mahmoud Sheikholeslami ◽  
Rana Khoeilar

Let G be a simple graph of order n . The matrix ℒ G = D G − A G is called the Laplacian matrix of G , where D G and A G denote the diagonal matrix of vertex degrees and the adjacency matrix of G , respectively. Let l 1 G , l n − 1 G be the largest eigenvalue, the second smallest eigenvalue of ℒ G respectively, and λ 1 G be the largest eigenvalue of A G . In this paper, we will present sharp upper and lower bounds for l 1 G and l n − 1 G . Moreover, we investigate the relation between l 1 G and λ 1 G .


2020 ◽  
Vol 36 (36) ◽  
pp. 214-227 ◽  
Author(s):  
Zhen Lin ◽  
Lianying Miao ◽  
Shu-Guang Guo

Let $G$ be a simple undirected graph. For any real number $\alpha \in[0,1]$, Nikiforov defined the $A_{\alpha}$-matrix of $G$ as $A_{\alpha}(G)=\alpha D(G)+(1-\alpha)A(G)$, where $A(G)$ and $D(G)$ are the adjacency matrix and the degree diagonal matrix of $G$, respectively. The $A_{\alpha}$-spread of a graph is defined as the difference between the largest eigenvalue and the smallest eigenvalue of the associated $A_{\alpha}$-matrix. In this paper, some lower and upper bounds on $A_{\alpha}$-spread are obtained, which extend the results of $A$-spread and $Q$-spread. Moreover, the trees with the minimum and the maximum $A_{\alpha}$-spread are determined, respectively.


2018 ◽  
Author(s):  
Anthony Nash ◽  
Nora H de Leeuw ◽  
Helen L Birch

<div> <div> <div> <p>The computational study of advanced glycation end-product cross- links remains largely unexplored given the limited availability of bonded force constants and equilibrium values for molecular dynamics force fields. In this article, we present the bonded force constants, atomic partial charges and equilibrium values of the arginine-lysine cross-links DOGDIC, GODIC and MODIC. The Hessian was derived from a series of <i>ab initio</i> quantum mechanical electronic structure calculations and from which a complete set of force constant and equilibrium values were generated using our publicly available software, ForceGen. Short <i>in vacuo</i> molecular dynamics simulations were performed to validate their implementation against quantum mechanical frequency calculations. </p> </div> </div> </div>


2019 ◽  
Vol 10 (3) ◽  
pp. 565-573
Author(s):  
Keerthi G. Mirajkar ◽  
Bhagyashri R. Doddamani

Author(s):  
S. Yahya Mohamed ◽  
A. Mohamed Ali

In this paper, the notion of energy extended to spherical fuzzy graph. The adjacency matrix of a spherical fuzzy graph is defined and we compute the energy of a spherical fuzzy graph as the sum of absolute values of eigenvalues of the adjacency matrix of the spherical fuzzy graph. Also, the lower and upper bounds for the energy of spherical fuzzy graphs are obtained.


Sign in / Sign up

Export Citation Format

Share Document