Hybridizing cuckoo search algorithm with bat algorithm for global numerical optimization

2018 ◽  
Vol 75 (5) ◽  
pp. 2395-2422 ◽  
Author(s):  
Mohammad Shehab ◽  
Ahamad Tajudin Khader ◽  
Makhlouf Laouchedi ◽  
Osama Ahmad Alomari
2019 ◽  
Vol 8 (3) ◽  
pp. 117-130 ◽  
Author(s):  
Lakshmanaprabu S.K. ◽  
Najumnissa Jamal D. ◽  
Sabura Banu U.

In this article, the tuning of multiloop Fractional Order PID (FOPID) controller is designed for Two Input Two Output (TITO) processes using an evolutionary algorithm such as the Genetic algorithm (GA), the Cuckoo Search algorithm (CS) and the Bat Algorithm (BA). The control parameters of FOPID are obtained using GA, CS, and BA for minimizing the integral error criteria. The main objective of this article is to compare the performance of the GA, CS, and BA for the multiloop FOPID controller problem. The integer order internal model control based PID (IMC-PID) controller is designed using the GA and the performance of the IMC-PID controller is compared with the FOPID controller scheme. The simulation results confirm that BA offers optimal controller parameter with a minimum value of IAE, ISE, ITAE with faster settling time.


2020 ◽  
pp. 1886-1929
Author(s):  
Hadj Ahmed Bouarara

This chapter subscribes in the framework of an analytical study about the computational intelligence algorithms. These algorithms are numerous and can be classified in two great families: evolutionary algorithms (genetic algorithms, genetic programming, evolutionary strategy, differential evolutionary, paddy field algorithm) and swarm optimization algorithms (particle swarm optimisation PSO, ant colony optimization (ACO), bacteria foraging optimisation, wolf colony algorithm, fireworks algorithm, bat algorithm, cockroaches colony algorithm, social spiders algorithm, cuckoo search algorithm, wasp swarm optimisation, mosquito optimisation algorithm). We have detailed each algorithm following a structured organization (the origin of the algorithm, the inspiration source, the summary, and the general process). This paper is the fruit of many years of research in the form of synthesis which groups the contributions proposed by various researchers in this field. It can be the starting point for the designing and modelling new algorithms or improving existing algorithms.


Author(s):  
Ramadan Babers ◽  
Aboul Ella Hassanien

In last few years many approaches have been proposed to detect communities in social networks using diverse ways. Community detection is one of the important researches in social networks and graph analysis. This paper presents a cuckoo search optimization algorithm with Lévy flight for community detection in social networks. Experimental on well-known benchmark data sets demonstrates that the proposed algorithm can define the structure and detect communities of complex networks with high accuracy and quality. In addition, the proposed algorithm is compared with some swarms algorithms including discrete bat algorithm, artificial fish swarm, discrete Krill Herd, ant lion algorithm and lion optimization algorithm and the results show that the proposed algorithm is competitive with these algorithms.


Algorithms ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 54 ◽  
Author(s):  
Juan Templos-Santos ◽  
Omar Aguilar-Mejia ◽  
Edgar Peralta-Sanchez ◽  
Raul Sosa-Cortez

This article focuses on the optimal gain selection for Proportional Integral (PI) controllers comprising a speed control scheme for the Permanent Magnet Synchronous Motor (PMSM). The gains calculation is performed by means of different algorithms inspired by nature, which allows improvement of the system performance in speed regulation tasks. For the tuning of the control parameters, five optimization algorithms are chosen: Bat Algorithm (BA), Biogeography-Based Optimization (BBO), Cuckoo Search Algorithm (CSA), Flower Pollination Algorithm (FPA) and Sine-Cosine Algorithm (SCA). Finally, for purposes of efficiency assessment, two reference speed profiles are introduced, where an acceptable PMSM performance is attained by using the proposed PI controllers tuned by nature inspired algorithms.


2014 ◽  
Vol 20 (1) ◽  
pp. 273-285 ◽  
Author(s):  
Gai-Ge Wang ◽  
Amir H. Gandomi ◽  
Xiangjun Zhao ◽  
Hai Cheng Eric Chu

Sign in / Sign up

Export Citation Format

Share Document