external archive
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 18)

H-INDEX

10
(FIVE YEARS 2)

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256206
Author(s):  
Juan Yao ◽  
Zhe Chen ◽  
Zhenling Liu

In the field of Differential Evolution (DE), a number of measures have been used to enhance algorithm. However, most of the measures need revision for fitting ensemble of different combinations of DE operators—ensemble DE algorithm. Meanwhile, although ensemble DE algorithm may show better performance than each of its constituent algorithms, there still exists the possibility of further improvement on performance with the help of revised measures. In this paper, we manage to implement measures into Ensemble of Differential Evolution Variants (EDEV). Firstly, we extend the collecting range of optional external archive of JADE—one of the constituent algorithm in EDEV. Then, we revise and implement the Event-Triggered Impulsive (ETI) control. Finally, Linear Population Size Reduction (LPSR) is used by us. Then, we obtain Improved Ensemble of Differential Evolution Variants (IEDEV). In our experiments, good performers in the CEC competitions on real parameter single objective optimization among population-based metaheuristics, state-of-the-art DE algorithms, or up-to-date DE algorithms are involved. Experiments show that our IEDEV is very competitive.


2020 ◽  
Vol 11 (4) ◽  
pp. 114-129
Author(s):  
Prabhujit Mohapatra ◽  
Kedar Nath Das ◽  
Santanu Roy ◽  
Ram Kumar ◽  
Nilanjan Dey

In this article, a new algorithm, namely the multi-objective competitive swarm optimizer (MOCSO), is introduced to handle multi-objective problems. The algorithm has been principally motivated from the competitive swarm optimizer (CSO) and the NSGA-II algorithm. In MOCSO, a pair wise competitive scenario is presented to achieve the dominance relationship between two particles in the population. In each pair wise competition, the particle that dominates the other particle is considered the winner and the other is consigned as the loser. The loser particles learn from the respective winner particles in each individual competition. The inspired CSO algorithm does not use any memory to remember the global best or personal best particles, hence, MOCSO does not need any external archive to store elite particles. The experimental results and statistical tests confirm the superiority of MOCSO over several state-of-the-art multi-objective algorithms in solving benchmark problems.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Fei Chen ◽  
Shuhuan Wu ◽  
Fang Liu ◽  
Junkai Ji ◽  
Qiuzhen Lin

Most multiobjective particle swarm optimizers (MOPSOs) often face the challenges of keeping diversity and achieving convergence on tackling many-objective optimization problems (MaOPs), as they usually use the nondominated sorting method or decomposition-based method to select the local or best particles, which is not so effective in high-dimensional objective space. To better solve MaOPs, this paper presents a novel angular-guided particle swarm optimizer (called AGPSO). A novel velocity update strategy is designed in AGPSO, which aims to enhance the search intensity around the particles selected based on their angular distances. Using an external archive, the local best particles are selected from the surrounding particles with the best convergence, while the global best particles are chosen from the top 20% particles with the better convergence among the entire particle swarm. Moreover, an angular-guided archive update strategy is proposed in AGPSO, which maintains a consistent population with balanceable convergence and diversity. To evaluate the performance of AGPSO, the WFG and MaF test suites with 5 to 10 objectives are adopted. The experimental results indicate that AGPSO shows the superior performance over four current MOPSOs (SMPSO, dMOPSO, NMPSO, and MaPSO) and four competitive evolutionary algorithms (VaEA, θ-DEA, MOEA\D-DD, and SPEA2-SDE), when solving most of the test problems used.


2020 ◽  
Author(s):  
Hisao Ishibuchi ◽  
Lie Meng Pang ◽  
Ke Shang

This paper proposes a new framework for the design of evolutionary multi-objective optimization (EMO) algorithms. The main characteristic feature of the proposed framework is that the optimization result of an EMO algorithm is not the final population but a subset of the examined solutions during its execution. As a post-processing procedure, a pre-specified number of solutions are selected from an unbounded external archive where all the examined solutions are stored. In the proposed framework, the final population does not have to be a good solution set. The point of the algorithm design is to examine a wide variety of solutions over the entire Pareto front and to select well-distributed solutions from the archive. In this paper, first we explain difficulties in the design of EMO algorithms in the existing two frameworks: non-elitist and elitist. Next, we propose the new framework of EMO algorithms. Then we demonstrate advantages of the proposed framework over the existing ones through computational experiments. Finally we suggest some interesting and promising future research topics.


Sign in / Sign up

Export Citation Format

Share Document