scholarly journals Lagrangian Transport and Chaotic Advection in Two-Dimensional Anisotropic Systems

2017 ◽  
Vol 119 (1) ◽  
pp. 225-246 ◽  
Author(s):  
Stephen Varghese ◽  
Michel Speetjens ◽  
Ruben Trieling
2004 ◽  
Vol 31 (4) ◽  
pp. 344-357
Author(s):  
T. A. Dunaeva ◽  
A. A. Gourjii ◽  
V. V. Meleshko

1991 ◽  
Vol 43 (10) ◽  
pp. 5728-5731 ◽  
Author(s):  
Steffen Rasenat ◽  
Erez Braun ◽  
Victor Steinberg

2021 ◽  
Vol 7 (23) ◽  
pp. eabf9402
Author(s):  
Katherine C. Elbert ◽  
William Zygmunt ◽  
Thi Vo ◽  
Corbin M. Vara ◽  
Daniel J. Rosen ◽  
...  

The use of nanocrystal (NC) building blocks to create metamaterials is a powerful approach to access emergent materials. Given the immense library of materials choices, progress in this area for anisotropic NCs is limited by the lack of co-assembly design principles. Here, we use a rational design approach to guide the co-assembly of two such anisotropic systems. We modulate the removal of geometrical incompatibilities between NCs by tuning the ligand shell, taking advantage of the lock-and-key motifs between emergent shapes of the ligand coating to subvert phase separation. Using a combination of theory, simulation, and experiments, we use our strategy to achieve co-assembly of a binary system of cubes and triangular plates and a secondary system involving two two-dimensional (2D) nanoplates. This theory-guided approach to NC assembly has the potential to direct materials choices for targeted binary co-assembly.


2017 ◽  
Vol 825 ◽  
pp. 631-650 ◽  
Author(s):  
Francesco Romanò ◽  
Arash Hajisharifi ◽  
Hendrik C. Kuhlmann

The topology of the incompressible steady three-dimensional flow in a partially filled cylindrical rotating drum, infinitely extended along its axis, is investigated numerically for a ratio of pool depth to radius of 0.2. In the limit of vanishing Froude and capillary numbers, the liquid–gas interface remains flat and the two-dimensional flow becomes unstable to steady three-dimensional convection cells. The Lagrangian transport in the cellular flow is organised by periodic spiralling-in and spiralling-out saddle foci, and by saddle limit cycles. Chaotic advection is caused by a breakup of a degenerate heteroclinic connection between the two saddle foci when the flow becomes three-dimensional. On increasing the Reynolds number, chaotic streamlines invade the cells from the cell boundary and from the interior along the broken heteroclinic connection. This trend is made evident by computing the Kolmogorov–Arnold–Moser tori for five supercritical Reynolds numbers.


1989 ◽  
Vol 209 ◽  
pp. 463-499 ◽  
Author(s):  
C. W. Leong ◽  
J. M. Ottino

Chaotic mixing of fluids in slow flows is ubiquitous but incompletely understood. However, relatively simple experiments provide a wealth of information regarding mixing mechanisms and indicate the need for complementary theoretical developments in dynamical systems. In this work we presnt a versatile cavity flow apparatus, capable of producing a variety of two-dimensional velocity fields, and use it to conduct a detailed experimental study of mixing in low-Reynolds-number flows. Since the goal is detailed understanding, only two time-periodic co-rotating flows induced by wall motions are considered: one continuous and the other discontinuous. Both types of flows produce exponential growth of intermaterial area, as expected from chaotic flows, and a mixture of islands and chaotic regions. A procedure for identifying periodic points and determining their movements is presented as well as how to make meaningful comparisons between periodic flows. We observe that periodic points move very much as a planetary system; planets (hyperbolic points) have moons (elliptic points) with twice the period of the planets; furthermore the spatial arrangement of periodic points becomes symmetric at regular time intervals. Detailed analyses reveal complex behaviour: birth, bifurcation, and collapse of islands; formation and periodic motion of coherent structures, such as islands and large-scale folds. However, the richness and complexity of the results obtained indicate that these two-dimensional time-periodic systems are far from completely understood and that other wall motions might deserve a similar level of scrutiny.


1994 ◽  
Vol 6 (7) ◽  
pp. 2465-2474 ◽  
Author(s):  
A. Babiano ◽  
G. Boffetta ◽  
A. Provenzale ◽  
A. Vulpiani

2010 ◽  
Vol 654 ◽  
pp. 1-4 ◽  
Author(s):  
STEPHEN WIGGINS

In the 1980s the incorporation of ideas from dynamical systems theory into theoretical fluid mechanics, reinforced by elegant experiments, fundamentally changed the way in which we view and analyse Lagrangian transport. The majority of work along these lines was restricted to two-dimensional flows and the generalization of the dynamical systems point of view to fully three-dimensional flows has seen less progress. This situation may now change with the work of Pouransari et al. (J. Fluid Mech., this issue, vol. 654, 2010, pp. 5–34) who study transport in a three-dimensional time-periodic flow and show that completely new types of dynamical systems structures and consequently, coherent structures, form a geometrical template governing transport.


2000 ◽  
Vol 403 ◽  
pp. 277-304 ◽  
Author(s):  
PHILIP L. BOYLAND ◽  
HASSAN AREF ◽  
MARK A. STREMLER

A new approach to regular and chaotic fluid advection is presented that utilizes the Thurston–Nielsen classification theorem. The prototypical two-dimensional problem of stirring by a finite number of stirrers confined to a disk of fluid is considered. The theory shows that for particular ‘stirring protocols’ a significant increase in complexity of the stirred motion – known as topological chaos – occurs when three or more stirrers are present and are moved about in certain ways. In this sense prior studies of chaotic advection with at most two stirrers, that were, furthermore, usually fixed in place and simply rotated about their axes, have been ‘too simple’. We set out the basic theory without proofs and demonstrate the applicability of several topological concepts to fluid stirring. A key role is played by the representation of a given stirring protocol as a braid in a (2+1)-dimensional space–time made up of the flow plane and a time axis perpendicular to it. A simple experiment in which a viscous liquid is stirred by three stirrers has been conducted and is used to illustrate the theory.


Sign in / Sign up

Export Citation Format

Share Document