slow flows
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 6)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Vol 83 (4) ◽  
Author(s):  
Hildeberto Jardón-Kojakhmetov ◽  
Christian Kuehn ◽  
Andrea Pugliese ◽  
Mattia Sensi

AbstractWe study a fast–slow version of an SIRS epidemiological model on homogeneous graphs, obtained through the application of the moment closure method. We use GSPT to study the model, taking into account that the infection period is much shorter than the average duration of immunity. We show that the dynamics occurs through a sequence of fast and slow flows, that can be described through 2-dimensional maps that, under some assumptions, can be approximated as 1-dimensional maps. Using this method, together with numerical bifurcation tools, we show that the model can give rise to periodic solutions, differently from the corresponding model based on homogeneous mixing.


2021 ◽  
Vol 13 (17) ◽  
pp. 3496
Author(s):  
Belizario A. Zárate ◽  
Rachid El Hamdouni ◽  
Tomás Fernández

This research tests the application of GNSS and RPAS techniques to the spatiotemporal analysis of landslide dynamics. Our method began by establishing non-permanent GNSS networks on the slope surfaces to perform periodic measurements by differential GNSS. Similarly, RPAS flights were made to acquire high-resolution images, which were oriented and georeferenced using ground control points and structure-from-motion algorithms to ultimately obtain digital surface models and orthophotos. Based on GNSS measurements, the direction and velocity of displacements were accurately calculated, and orthophotos and DSMs were used to calculate horizontal and vertical displacements in a set of significant points throughout the study area, reaching accuracies higher than 0.035 m in the GNSS data and 0.10 m in the RPAS data. These values were within the accuracy required for such studies. Based on the field observations and the results from the photogrammetric studies, the two studied landslides were classified as very slow flows. These techniques are the basis for establishing early warning systems in areas of natural hazards based on the calculation of displacement speeds of the surface of slopes.


2021 ◽  
Author(s):  
Belizario A. Zárate Torres ◽  
Rachid El Hamdouni ◽  
Tomas Fernández del Castillo

Abstract. This research tests the application of GNSS and RPAS techniques to the spatiotemporal analysis of landslide dynamics. Our method began by establishing non-permanent GNSS networks on the slope surfaces to perform periodic measurements by differential GNSS. Similarly, RPAS flights were made to acquire high-resolution images, which were oriented and georeferenced using ground control points and structure-from-motion algorithms to obtain digital surface models and orthophotos ultimately. Based on GNSS measurements, the direction and velocity of displacements were accurately calculated, and orthophotos and DSMs were used to calculate horizontal and vertical displacements in a set of significant points throughout the study area, reaching accuracies higher than 0.035 m in the GNSS data and 0.10 m in the RPAS data. These values were within the accuracy required for such studies. Based on the field observations and the results from the photogrammetric studies, the two studied landslides were classified as very slow flows.


2019 ◽  
Vol 64 (5) ◽  
pp. 596-605
Author(s):  
V. M. Zhdanov
Keyword(s):  

2019 ◽  
Vol 89 (5) ◽  
pp. 646
Author(s):  
В.М. Жданов

AbstractBarodiffusion in slow flows of a gas mixture is studied with an approximation using hydrodynamic equations of motion for the individual mixture components. It is shown that consideration of the viscous momentum transfer and the contribution of Knudsen layers for the mixture flowing in a channel has a considerable effect on the value of the barodiffusion factor. The relations are obtained for the mean diffusion fluxes of components and for the total flux of the mixture in a circular cylindrical capillary; these relations are valid for moderately small Knudsen numbers used for calculation of the diffusion baroeffect and separation effect when the gas mixture flows in a set of capillaries connecting two volumes. The modification of the relations for the barodiffusion factor (and for the diffusion slip coefficient cross-linked with it) allows interpreting the sign alteration of these effects observed experimentally for some gas mixtures at intermediate Knudsen numbers.


2018 ◽  
Vol 40 (5) ◽  
pp. 325-338 ◽  
Author(s):  
Virginie Grand-Perret ◽  
Jean-René Jacquet ◽  
Ingrid Leguerney ◽  
Baya Benatsou ◽  
Jean-Marc Grégoire ◽  
...  

Tumor microvascularization is a biomarker of response to antiangiogenic treatments and is accurately assessed by ultrasound imaging. Imaging modes used to visualize slow flows include Power Doppler imaging, dynamic contrast-enhanced ultrasonography, and more recently, microvascular Doppler. Flow phantoms are used to evaluate the performance of Doppler imaging techniques, but they do not have a steady flow and sufficiently small channels. We report a novel device for robust and stable microflow measurements and the study of the microvascularization. Based on microfluidics technology, the prototype features wall-less cylindrical channels of diameters ranging from as small as 147 up to 436 µm, cast in a soft silicone polymer and perfused via a microfluidic flow pressure controller. The device was assessed using flow rates from 49 to 146 µL/min, with less than 1% coefficient of variation over three minutes, corresponding to velocities of 6 to 142 mm/s. This enabled us to evaluate and confirm the reliability of the Superb Microvascular Imaging Doppler mode compared with the Power Doppler mode at these flow rates in the presence of vibrations mimicking physiological motion.


Sign in / Sign up

Export Citation Format

Share Document