scholarly journals Correction to: Numerical Simulation of Turbulent Flow and Heat Transfer in a Three-Dimensional Channel Coupled with Flow Through Porous Structures

2018 ◽  
Vol 123 (2) ◽  
pp. 453-453
Author(s):  
Guang Yang ◽  
Bernhard Weigand ◽  
Alexandros Terzis ◽  
Kilian Weishaupt ◽  
Rainer Helmig
2018 ◽  
Vol 122 (1) ◽  
pp. 145-167 ◽  
Author(s):  
Guang Yang ◽  
Bernhard Weigand ◽  
Alexandros Terzis ◽  
Kilian Weishaupt ◽  
Rainer Helmig

Author(s):  
H. X. Liang ◽  
Q. W. Wang ◽  
L. Q. Luo ◽  
Z. P. Feng

Three-dimensional numerical simulation was conducted to investigate the flow field and heat transfer performance of the Cross-Wavy Primary Surface (CWPS) recuperators for microturbines. Using high-effective compact recuperators to achieve high thermal efficiency is one of the key techniques in the development of microturbine in recent years. Recuperators need to have minimum volume and weight, high reliability and durability. Most important of all, they need to have high thermal-effectiveness and low pressure-losses so that the gas turbine system can achieve high thermal performances. These requirements have attracted some research efforts in designing and implementing low-cost and compact recuperators for gas turbine engines recently. One of the promising techniques to achieve this goal is the so-called primary surface channels with small hydraulic dimensions. In this paper, we conducted a three-dimensional numerical study of flow and heat transfer for the Cross-Wavy Primary Surface (CWPS) channels with two different geometries. In the CWPS configurations the secondary flow is created by means of curved and interrupted surfaces, which may disturb the thermal boundary layers and thus improve the thermal performances of the channels. To facilitate comparison, we chose the identical hydraulic diameters for the above four CWPS channels. Since our experiments on real recuperators showed that the Reynolds number ranges from 150 to 500 under the operating conditions, we implemented all the simulations under laminar flow situations. By analyzing the correlations of Nusselt numbers and friction factors vs. Reynolds numbers of the four CWPS channels, we found that the CWPS channels have superior and comprehensive thermal performance with high compactness, i.e., high heat transfer area to volume ratio, indicating excellent commercialized application in the compact recuperators.


2011 ◽  
Vol 383-390 ◽  
pp. 6657-6662 ◽  
Author(s):  
Jun Xiao Feng ◽  
Qi Bo Cheng ◽  
Si Jing Yu

Based on the analysis of structural characteristic superiority, the process of combustion, flue gas flow and heat transfer in the upright magnesium reducing furnace, the three dimensional mathematical model is devoloped. And numerical simulation is performed further with the commercial software FLUENT. Finally, the flow and temperature field in furnace and temperature field in reducing pot have been obtained. The results indicate that the upright magnesium reducing furnace has perfect flue gas flow field and temperature field to meet the challenge of the magnesium reducing process; the major factors that affect the magnesium reducing reaction are the low thermal conductivity of slag and the high chemical reaction heat absorption.


Author(s):  
Ephraim M. Sparrow ◽  
John P. Abraham ◽  
Paul W. Chevalier

The method of Design of Simulation (DOS) was used to guide and enhance a numerical simulation of fluid flow and heat transfer through offset-fin arrays which from the interior geometry of a cold plate. The basic problem involved 12 independent parameters. This prohibitive parametric burden was lessened by the creative use of nondimensionalization that was brought to fruition by a special transformation of the boundary conditions. Subsequent to the reduction of the number of parameters, the DOS method was employed to limit the number of simulation runs while maintaining an accurate representation of the parameter space. The DOS method also provided excellent correlations of both the dimensionless heat transfer and pressure drop results. The results were evaluated with respect to the Colburn Analogy for heat and momentum transfer. It was found that the offseting of the fins created a larger increase in the friction factor than that which was realized for the dimensionless heat transfer coefficient.


Sign in / Sign up

Export Citation Format

Share Document