scholarly journals Inertial proximal point regularization algorithm for unconstrained vector convex optimization problems

2008 ◽  
Vol 60 (9) ◽  
pp. 1483-1491 ◽  
Author(s):  
Nguyen Buong
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Peichao Duan ◽  
Yiqun Zhang ◽  
Qinxiong Bu

AbstractThe proximal gradient method is a highly powerful tool for solving the composite convex optimization problem. In this paper, firstly, we propose inexact inertial acceleration methods based on the viscosity approximation and proximal scaled gradient algorithm to accelerate the convergence of the algorithm. Under reasonable parameters, we prove that our algorithms strongly converge to some solution of the problem, which is the unique solution of a variational inequality problem. Secondly, we propose an inexact alternated inertial proximal point algorithm. Under suitable conditions, the weak convergence theorem is proved. Finally, numerical results illustrate the performances of our algorithms and present a comparison with related algorithms. Our results improve and extend the corresponding results reported by many authors recently.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Darina Dvinskikh ◽  
Alexander Gasnikov

Abstract We introduce primal and dual stochastic gradient oracle methods for decentralized convex optimization problems. Both for primal and dual oracles, the proposed methods are optimal in terms of the number of communication steps. However, for all classes of the objective, the optimality in terms of the number of oracle calls per node takes place only up to a logarithmic factor and the notion of smoothness. By using mini-batching technique, we show that the proposed methods with stochastic oracle can be additionally parallelized at each node. The considered algorithms can be applied to many data science problems and inverse problems.


Sign in / Sign up

Export Citation Format

Share Document