Modeling Land-Use and Land-Cover Change and Hydrological Responses under Consistent Climate Change Scenarios in the Heihe River Basin, China

2015 ◽  
Vol 29 (13) ◽  
pp. 4701-4717 ◽  
Author(s):  
Ling Zhang ◽  
Zhuotong Nan ◽  
Wenjun Yu ◽  
Yingchun Ge
2018 ◽  
Vol 10 (12) ◽  
pp. 4700 ◽  
Author(s):  
Minmin Zhao ◽  
Zhibin He

Ecological protection and restoration results in a series of complicated changes in land cover. Lack of research on the historical and potential effects of land cover change on ecosystem service value (ESV) hinders decision-making on trade-offs involved in environmental management. To address this gap, the effects of land cover change on ESV in the upper reaches of the Heihe River Basin in northwestern China were evaluated. First, on the basis of land cover maps for 2001, 2008 and 2015, the land cover map for 2029 was predicted with CA-Markov model. Then, the changes in ESV resulting from land cover change were valuated with the benefit transfer method. The results showed that the total ESV increased from $1207.33 million (USD) in 2001 to $1479.48 million (USD) in 2015, and the value was expected to reach $1574.53 million (USD) in 2029. The increase in ESV can be mainly attributed to expansion in areas of wetland. In this study, the elastic index was applied to identify areas that were more sensitive to ecological management, aiding in selecting sites for investment in ecological protection and restoration programs. Furthermore, the potential effects of land cover change on ESV was evaluated. The results are of great importance for guiding future ecological management.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Chenchen Shi ◽  
Jinyan Zhan ◽  
Yongwei Yuan ◽  
Feng Wu ◽  
Zhihui Li

Ecosystem services are the benefit human populations derive directly and indirectly from the natural environment. They suffer from both the human intervention, like land use zoning change, and natural intervention, like the climate change. Under the background of climate change, regulation services of ecosystem could be strengthened under proper land use zoning policy to mitigate the climate change. In this paper, a case study was conducted in the middle reaches of the Heihe River Basin to assess the ecosystem services conservation zoning under the change of land use associated with climate variations. The research results show the spatial impact of land use zoning on ecosystem services in the study area which are significant reference for the spatial optimization of land use zoning in preserving the key ecosystem services to mitigate the climate change. The research contributes to the growing literature in finely characterizing the ecosystem services zones altered by land use change to alleviate the impact of climate change, as there is no such systematic ecosystem zoning method before.


2014 ◽  
Vol 7 (1) ◽  
pp. 366-383 ◽  
Author(s):  
Xiaoli Geng ◽  
Xinsheng Wang ◽  
Haiming Yan ◽  
Qian Zhang ◽  
Gui Jin

2020 ◽  
Vol 125 (10) ◽  
Author(s):  
Nanshan You ◽  
Jijun Meng ◽  
Lijun Zhu ◽  
Song Jiang ◽  
Likai Zhu ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2658
Author(s):  
Rui Luo ◽  
Shiliang Yang ◽  
Yang Zhou ◽  
Pengqun Gao ◽  
Tianming Zhang

A key challenge to the sustainability and security of grassland capacity is the protection of water-related ecosystem services (WESs). With the change of land use, the supply of aquatic ecosystem services has changed, and the grassland-carrying capacity has been affected. However, the correlation mechanism between WESs and the grassland-carrying capacity is not clear. In this study, we used the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs) model to evaluate the impact of land-use change on WESs, and made a tradeoff analysis between WESs and grassland-carrying capacity. Considering that the Heihe River Basin (HRB) was an important grassland vegetation zone, which was a milestone for the development of animal husbandry in China, HRB was taken as a case. The main findings are as follows: (1) the spatial distribution of WESs shows the dissimilation rule, the upper reaches are the main water yield area, the soil retention is weakening in the middle and lower reaches, and the pollution has further increased in the middle and upper reaches. (2) The carrying capacity of animal husbandry decreased in the upper reaches, increased in Shandan County and Zhangye City in the middle reaches, and decreased sharply in other regions. (3) There was a positive correlation between the livestock-carrying capacity and nitrogen export in 2018, which was increasing. As the change of land use has changed the evapotranspiration structure, WESs have undergone irreversible changes. Meanwhile, the development of large-scale irrigated farmland and human activities would be the source of a further intensification of regional soil erosion and water pollution. Therefore, it is necessary to trade off the WESs and animal husbandry under land-use change. This paper revealed how WESs changed from 2000 to 2018, the characteristics of the changes in the spatial and temporal distribution, and the carrying capacity. It aims to provide a scientific basis for coordinating the contradiction between grassland and livestock resources, improving the regional ecological security situation, and carrying out ecosystem management.


Sign in / Sign up

Export Citation Format

Share Document