Isolating the Impacts of Land Use/Cover Change and Climate Change on the GPP in the Heihe River Basin of China

2020 ◽  
Vol 125 (10) ◽  
Author(s):  
Nanshan You ◽  
Jijun Meng ◽  
Lijun Zhu ◽  
Song Jiang ◽  
Likai Zhu ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Chenchen Shi ◽  
Jinyan Zhan ◽  
Yongwei Yuan ◽  
Feng Wu ◽  
Zhihui Li

Ecosystem services are the benefit human populations derive directly and indirectly from the natural environment. They suffer from both the human intervention, like land use zoning change, and natural intervention, like the climate change. Under the background of climate change, regulation services of ecosystem could be strengthened under proper land use zoning policy to mitigate the climate change. In this paper, a case study was conducted in the middle reaches of the Heihe River Basin to assess the ecosystem services conservation zoning under the change of land use associated with climate variations. The research results show the spatial impact of land use zoning on ecosystem services in the study area which are significant reference for the spatial optimization of land use zoning in preserving the key ecosystem services to mitigate the climate change. The research contributes to the growing literature in finely characterizing the ecosystem services zones altered by land use change to alleviate the impact of climate change, as there is no such systematic ecosystem zoning method before.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2658
Author(s):  
Rui Luo ◽  
Shiliang Yang ◽  
Yang Zhou ◽  
Pengqun Gao ◽  
Tianming Zhang

A key challenge to the sustainability and security of grassland capacity is the protection of water-related ecosystem services (WESs). With the change of land use, the supply of aquatic ecosystem services has changed, and the grassland-carrying capacity has been affected. However, the correlation mechanism between WESs and the grassland-carrying capacity is not clear. In this study, we used the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs) model to evaluate the impact of land-use change on WESs, and made a tradeoff analysis between WESs and grassland-carrying capacity. Considering that the Heihe River Basin (HRB) was an important grassland vegetation zone, which was a milestone for the development of animal husbandry in China, HRB was taken as a case. The main findings are as follows: (1) the spatial distribution of WESs shows the dissimilation rule, the upper reaches are the main water yield area, the soil retention is weakening in the middle and lower reaches, and the pollution has further increased in the middle and upper reaches. (2) The carrying capacity of animal husbandry decreased in the upper reaches, increased in Shandan County and Zhangye City in the middle reaches, and decreased sharply in other regions. (3) There was a positive correlation between the livestock-carrying capacity and nitrogen export in 2018, which was increasing. As the change of land use has changed the evapotranspiration structure, WESs have undergone irreversible changes. Meanwhile, the development of large-scale irrigated farmland and human activities would be the source of a further intensification of regional soil erosion and water pollution. Therefore, it is necessary to trade off the WESs and animal husbandry under land-use change. This paper revealed how WESs changed from 2000 to 2018, the characteristics of the changes in the spatial and temporal distribution, and the carrying capacity. It aims to provide a scientific basis for coordinating the contradiction between grassland and livestock resources, improving the regional ecological security situation, and carrying out ecosystem management.


Author(s):  
Liu Liu ◽  
Zezhong Guo ◽  
Guanhua Huang ◽  
Ruotong Wang

As the second largest inland river basin situated in the middle of the Hexi Corridor, Northwest China, the Heihe River basin (HRB) has been facing a severe water shortage problem, which seriously restricts its green and sustainable development. The evaluation of climate change impact on water productivity inferred by crop yield and actual evapotranspiration is of significant importance for water-saving in agricultural regions. In this study, the multi-model projections of climate change under the three Representative Concentration Pathways emission scenarios (RCP2.6, RCP4.5, RCP8.5) were used to drive an agro-hydrological model to evaluate the crop water productivity in the middle irrigated oases of the HRB from 2021–2050. Compared with the water productivity simulation based on field experiments during 2012–2015, the projected water productivity in the two typical agricultural areas (Gaotai and Ganzhou) both exhibited an increasing trend in the future 30 years, which was mainly attributed to the significant decrease of the crop water consumption. The water productivity in the Gaotai area under the three RCP scenarios during 2021–2050 increased by 9.2%, 14.3%, and 11.8%, while the water productivity increased by 15.4%, 21.6%, and 19.9% in the Ganzhou area, respectively. The findings can provide useful information on the Hexi Corridor and the Belt and Road to policy-makers and stakeholders for sustainable development of the water-ecosystem-economy system.


2019 ◽  
Vol 01 (01) ◽  
pp. 1950003 ◽  
Author(s):  
AIDI HUO ◽  
XIAOFAN WANG ◽  
YUXIANG CHENG ◽  
CHUNLI ZHENG ◽  
CHENG JIANG

Assessing the impacts of climate change on hydrological regime and associated social and economic activities (such as farming) is important for water resources management in any river basin. In this study, we used the popular Soil and Water Assessment Tool (SWAT) to evaluate the impacts of future climate change on the availability of water resources in the Heihe River basin located within Shaanxi Province, China, in terms of runoff and streamflow. The results show that over the next 40 years (starting in 2020 till 2059), changes in the averaged annual runoff ratio are approximately [Formula: see text]11.0%, [Formula: see text]6.4%, 7.2%, and 20.4% for each of the next four consecutive decades as compared to the baseline period (2010–2019). The predicted annual runoff demonstrates an increase trend after a reduction and may result in increased drought and flood risk in the Heihe River basin. To minimize or mitigate these impacts, various adaptation methods have been proposed for the study area, such as stopping irrigation, flood control operation; reasonable development and utilization of regional underground water sources should be implemented in Zhouzhi county and Huyi region in the lower reaches of Heihe River basin.


2005 ◽  
Vol 15 (4) ◽  
pp. 405-414 ◽  
Author(s):  
Wang Genxu ◽  
Yang Lingyuan ◽  
Chen Lin ◽  
Jumpei Kubota

2009 ◽  
Vol 53 (2) ◽  
pp. 273-290 ◽  
Author(s):  
Liu Wei ◽  
Cao Shengkui ◽  
Xi Haiyang ◽  
Feng Qi

Sign in / Sign up

Export Citation Format

Share Document