Optimal Design for Shock Damper with Genetic Algorithm to Control Water Hammer Effects in Complex Water Distribution Systems

2019 ◽  
Vol 33 (5) ◽  
pp. 1665-1681
Author(s):  
Mohammad Bostan ◽  
Ali Akbar Akhtari ◽  
Hossein Bonakdari ◽  
Farshad Jalili
Author(s):  
Avi Ostfeld

Water distribution systems least cost pipe sizing/design is probably the most explored problem in water distribution systems optimization. Attracted numerous studies over the last four decades, two main approaches were employed: decomposition in which an “inner” linear programming problem is solved for a fixed set of flows/heads, while the flows/heads are altered at an “outer” problem using a gradient or a sub-gradient type technique; and the utilization of an evolutionary optimization algorithm (e.g., a genetic algorithm). In reality, however, from a broader perspective the design problem is inherently of a multiobjective nature incorporating competing objectives such as minimizing cost versus maximizing reliability. This chapter reviews some of the literature on single and multiobjective optimal design of water distribution systems and suggests a few future research directions in this area.


1997 ◽  
Vol 123 (4) ◽  
pp. 381-388 ◽  
Author(s):  
K. Vasant Kumar Varma ◽  
Shankar Narasimhan ◽  
S. Murty Bhallamudi

2020 ◽  
Vol 61 ◽  
pp. 102306
Author(s):  
Seneshaw Tsegaye ◽  
Kristopher C. Gallagher ◽  
Thomas M. Missimer

Author(s):  
Berge Djebedjian ◽  
Ashraf Yaseen ◽  
Magdy Abou Rayan

This paper presents a new adaptive penalty method for genetic algorithms (GA). External penalty functions have been used to convert a constrained optimization problem into an unconstrained problem for GA-based optimization. The success of the genetic algorithm application to the design of water distribution systems depends on the choice of the penalty function. The optimal design of water distribution systems is a constrained non-linear optimization problem. Constraints (for example, the minimum pressure requirements at the nodes) are generally handled within genetic algorithm optimization by introducing a penalty cost function. The optimal solution is found when the pressures at some nodes are close to the minimum required pressure. The goal of an adaptive penalty function is to change the value of the penalty draw-down coefficient during the search allowing exploration of infeasible regions to find optimal building blocks, while preserving the feasibility of the final solution. In this study, a new penalty coefficient strategy is assumed to increase with the total cost at each generation and inversely with the total number of nodes. The application of the computer program to case studies shows that it finds the least cost in a favorable number of function evaluations if not less than that in previous studies and it is computationally much faster when compared with other studies.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 553 ◽  
Author(s):  
Young Choi ◽  
Joong Kim

This study proposes a multi-objective optimal design approach for water distribution systems, considering mechanical system redundancy under multiple pipe failure. Mechanical redundancy is applied to the system’s hydraulic ability, based on the pressure deficit between the pressure requirements under abnormal conditions. The developed design approach shows the relationships between multiple pipe failure states and system redundancy, for different numbers of pipe-failure conditions (e.g., first, second, third, …, tenth). Furthermore, to consider extreme demand modeling, the threshold of the demand quantity is investigated simultaneously with multiple pipe failure modeling. The design performance is evaluated using the mechanical redundancy deficit under extreme demand conditions. To verify the proposed design approach, an expanded version of the well-known benchmark network is used, configured as an ideal grid-shape, and the multi-objective harmony search algorithm is used as the optimal design approach, considering construction cost and system mechanical redundancy. This optimal design technique could be used to propose a standard for pipe failure, based on factors such as the number of broken pipes, during failure condition analysis for redundancy-based designs of water distribution systems.


Sign in / Sign up

Export Citation Format

Share Document