Single-Stage and Two-Stage Anaerobic Digestion of Food Waste: Effect of the Organic Loading Rate on the Methane Production and Volatile Fatty Acids

2021 ◽  
Vol 232 (3) ◽  
Author(s):  
Brayan Alexis Parra-Orobio ◽  
Mariano Nicolas Cruz-Bournazou ◽  
Patricia Torres-Lozada
Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1487
Author(s):  
Vicky De Groof ◽  
Marta Coma ◽  
Tom C. Arnot ◽  
David J. Leak ◽  
Ana B. Lanham

Production of medium chain carboxylic acids (MCCA) as renewable feedstock bio-chemicals, from food waste (FW), requires complicated reactor configurations and supplementation of chemicals to achieve product selectivity. This study evaluated the manipulation of organic loading rate in an un-supplemented, single stage stirred tank reactor to steer an anaerobic digestion (AD) microbiome towards acidogenic fermentation (AF), and thence to chain elongation. Increasing substrate availability by switching to a FW feedstock with a higher COD stimulated chain elongation. The MCCA species n-caproic (10.1 ± 1.7 g L−1) and n-caprylic (2.9 ± 0.8 g L−1) acid were produced at concentrations comparable to more complex reactor set-ups. As a result, of the adjusted operating strategy, a more specialised microbiome developed containing several MCCA-producing bacteria, lactic acid-producing Olsenella spp. and hydrogenotrophic methanogens. By contrast, in an AD reactor that was operated in parallel to produce biogas, the retention times had to be doubled when fed with the high-COD FW to maintain biogas production. The AD microbiome comprised a diverse mixture of hydrolytic and acidogenic bacteria, and acetoclastic methanogens. The results suggest that manipulation of organic loading rate and food-to-microorganism ratio may be used as an operating strategy to direct an AD microbiome towards AF, and to stimulate chain elongation in FW fermentation, using a simple, un-supplemented stirred tank set-up. This outcome provides the opportunity to repurpose existing AD assets operating on food waste for biogas production, to produce potentially higher value MCCA products, via simple manipulation of the feeding strategy.


2013 ◽  
Vol 143 ◽  
pp. 525-530 ◽  
Author(s):  
Jianguo Jiang ◽  
Yujing Zhang ◽  
Kaimin Li ◽  
Quan Wang ◽  
Changxiu Gong ◽  
...  

2012 ◽  
Vol 118 ◽  
pp. 210-218 ◽  
Author(s):  
Norio Nagao ◽  
Nobuyuki Tajima ◽  
Minako Kawai ◽  
Chiaki Niwa ◽  
Norio Kurosawa ◽  
...  

2015 ◽  
Vol 733 ◽  
pp. 419-422
Author(s):  
Bing Mei ◽  
Xu Ya Peng

The use of volatile fatty acids (VFAs) as process indicators in biogas reactors treating Food Waste (FW) was studied. The aim of this work was to determine a reliable parameter which could be used as an indicator of process imbalance during anaerobic digestion of FW in the continuously stirred tank reactors (CSTR) anaerobic reactor. It can be concluded from this that not only VFAs concentrations are indicator for process imbalance during anaerobic digestion of FW, but also VFAs changes constitute the most important indicators of early warning of process imbalances.


2021 ◽  
Vol 38 (1) ◽  
pp. 179-193
Author(s):  
N.C. Ezebuiro ◽  
I. Körner

Volatile fatty acids (VFAs) and trace elements (TEs) interactions (VFAs*TEs) during biomethanization have effects that could be exploited to enhance anaerobic digestion (AD) of biomass. The goal of this study was to validate biocatalytic effects of specialized VFAs*TEs identified from a batch-derived Optimum TEs Configuration (or simply ‘Optimum’) on high organic loading rate (OLR) involving mixed fruit residue (MFR) fed in semi-continuous AD operation. The specialized VFAs*TEs were formulated as Variants of the Optimum and included Optimum –Cobalt (Co) for specialized VFAs*Co effects, and Optimum +Selenium (Se) for specialized VFAs*Se effects. Four duplicate AD reactors were treated with formulations reflecting the Optimum and the Variants. Each duplicate reactor was semi-continuously fed with MFR at varying OLR until instability occurred. Methane production, total volatile organic acidity (FOS) / total alkalinity (TAC) and VFAs fingerprints were measured as main responses. The results showed that reactors of the Optimum and its Variants were unstable at OLR of 8g oDM/L/d, but stability was restored in the Optimum –Co (FOS/TAC values of 0.6 compared to 1.51 and 1.67 for Optimum and Optimum +Se respectively). The average specific CH4 production (Nml/g oDM) of the Optimum and its Variants were Control: 431±36; Optimum: 553±16; Optimum –Co: 580±12; and Optimum +Se: 545±13. Optimum –Co also had the lowest acetic acid and butyric acid accumulation, but had higher propionic acid concentration (0.7 g/L) compared to the Optimum (0.3 g/L) and Optimum +Se (0.4 g/L).


2021 ◽  
Vol 129 ◽  
pp. 20-25
Author(s):  
Gamal K. Hassan ◽  
Rhys Jon Jones ◽  
Jaime Massanet-Nicolau ◽  
Richard Dinsdale ◽  
M.M. Abo-Aly ◽  
...  

2020 ◽  
Vol 152 ◽  
pp. 1140-1148 ◽  
Author(s):  
Steven Wainaina ◽  
Mukesh Kumar Awasthi ◽  
Ilona Sárvári Horváth ◽  
Mohammad J. Taherzadeh

2017 ◽  
Vol 61 ◽  
pp. 484-493 ◽  
Author(s):  
Sachin Paudel ◽  
Youngjun Kang ◽  
Yeong-Seok Yoo ◽  
Gyu Tae Seo

2020 ◽  
Vol 27 ◽  
pp. e00503
Author(s):  
Jandir Pereira Blasius ◽  
Ronan Cleber Contrera ◽  
Sandra Imaculada Maintinguer ◽  
Marcus Cesar Avezum Alves de Castro

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9693
Author(s):  
Wattananarong Markphan ◽  
Chonticha Mamimin ◽  
Wantanasak Suksong ◽  
Poonsuk Prasertsan ◽  
Sompong O-Thong

Background Anaerobic digestion (AD) is a suitable process for treating high moisture MSW with biogas and biofertilizer production. However, the low stability of AD performance and low methane production results from high moisture MSW due to the fast acidify of carbohydrate fermentation. The effects of organic loading and incineration fly ash addition as a pH adjustment on methane production from high moisture MSW in the single-stage AD and two-stage AD processes were investigated. Results Suitable initial organic loading of the single-stage AD process was 17 gVS L−1 at incineration fly ash (IFA) addition of 0.5% with methane yield of 287 mL CH4 g−1 VS. Suitable initial organic loading of the two-stage AD process was 43 gVS L−1 at IFA addition of 1% with hydrogen and methane yield of 47.4 ml H2 g−1 VS and 363 mL CH4 g−1 VS, respectively. The highest hydrogen and methane production of 8.7 m3 H2 ton−1 of high moisture MSW and 66.6 m3 CH4 ton−1 of high moisture MSW was achieved at organic loading of 43 gVS L−1 at IFA addition of 1% by two-stage AD process. Biogas production by the two-stage AD process enabled 18.5% higher energy recovery than single-stage AD. The 1% addition of IFA into high moisture MSW was useful for controlling pH of the two-stage AD process with enhanced biogas production between 87–92% when compared to without IFA addition. Electricity production and energy recovery from MSW using the coupled incineration with biogas production by two-stage AD process were 9,874 MJ ton−1 MSW and 89%, respectively. Conclusions The two-stage AD process with IFA addition for pH adjustment could improve biogas production from high moisture MSW, as well as reduce lag phase and enhance biodegradability efficiency. The coupled incineration process with biogas production using the two-stage AD process was suitable for the management of MSW with low area requirement, low greenhouse gas emissions, and high energy recovery.


Sign in / Sign up

Export Citation Format

Share Document