stirred tank reactors
Recently Published Documents


TOTAL DOCUMENTS

499
(FIVE YEARS 83)

H-INDEX

40
(FIVE YEARS 5)

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 80
Author(s):  
Celia Alvarez-Gonzalez ◽  
Victoria E. Santos ◽  
Miguel Ladero ◽  
Juan M. Bolivar

Cellulose saccharification to glucose is an operation of paramount importance in the bioenergy sector and the chemical and food industries, while glucose is a critical platform chemical in the integrated biorefinery. Among the cellulose degrading enzymes, β-glucosidases are responsible for cellobiose hydrolysis, the final step in cellulose saccharification, which is usually the critical bottleneck for the whole cellulose saccharification process. The design of very active and stable β-glucosidase-based biocatalysts is a key strategy to implement an efficient saccharification process. Enzyme immobilization and reaction engineering are two fundamental tools for its understanding and implementation. Here, we have designed an immobilized-stabilized solid-supported β−glucosidase based on the glyoxyl immobilization chemistry applied in porous solid particles. The biocatalyst was stable at operational temperature and highly active, which allowed us to implement 25 °C as working temperature with a catalyst productivity of 109 mmol/min/gsupport. Cellobiose degradation was implemented in discontinuous stirred tank reactors, following which a simplified kinetic model was applied to assess the process limitations due to substrate and product inhibition. Finally, the reactive process was driven in a continuous flow fixed-bed reactor, achieving reaction intensification under mild operation conditions, reaching full cellobiose conversion of 34 g/L in a reaction time span of 20 min.


Heat Transfer ◽  
2021 ◽  
Author(s):  
Chaitanya D. Moholkar ◽  
Shivam V. Vala ◽  
Channamallikarjun S. Mathpati ◽  
Aniruddha J. Joshi ◽  
Vivek S. Vitankar ◽  
...  

2021 ◽  
Vol 2092 (1) ◽  
pp. 012003
Author(s):  
Tatiana Mikhailova ◽  
Sofia Mustafina ◽  
Vladimir Mikhailov

Abstract The article presents an approach to the processing of chemical experiment’s data using a Microsoft Excel software. Instead of storing the experiment data in text files, it is proposed to use a Microsoft Excel file of a certain structure. A macro has been developed to automate the process of transferring data from text files to a common file. The described approach can be applied when solving problems accompanied by storing a large amount of statistical data, which can be obtained as a result of natural or computational experiments. The macro has been tested on the data of a laboratory and numerical experiment on the synthesis of a styrene-butadiene copolymer. This copolymer is formed as a result of carrying out the process of copolymerization in continuous mode in a cascade of continuous stirred tank reactors. The results of the experiment are the characteristics of the formed product for each reactor of the cascade at the end of each hour of process modeling. Transferring data into a single file of a certain structure allows you to graphically present the results of the experiment and facilitates further analysis of the characteristics of the product being studied, depending on the formulation and process conditions.


2021 ◽  
Vol 9 (11) ◽  
pp. 2350
Author(s):  
Aleksandr Bulaev ◽  
Aleksandra Nechaeva ◽  
Yuliya Elkina ◽  
Vitaliy Melamud

Tank bio-oxidation is a biohydrometallurgical technology widely used for metal recovery from sulfide concentrates. Since carbon availability is one of the key factors affecting microbial communities, it may also determine the rate of sulfide concentrate bio-oxidation. The goal of the present work was to evaluate the effect of carbon sources on the bio-oxidation of the concentrate containing 56% pyrite and 14% arsenopyrite at different temperatures (40 and 50 °C) in stirred tank reactors. CO2 was supplied into the pulp of the first reactor (about 0.01 L/min) and 0.02% (w/v) molasses was added to the pulp of the second one, and no additional carbon sources were used in the control tests. At 40 °C, 77% of pyrite and 98% of arsenopyrite were oxidized in the first reactor, in the second one, 73% of pyrite and 98% of arsenopyrite were oxidized, while in the control reactor, 27% pyrite and 93% arsenopyrite were oxidized. At 50 °C, in the first reactor, 94% of pyrite and 99% of arsenopyrite were oxidized, in the second one, 21% of pyrite and 94% of arsenopyrite were oxidized, while in the control reactor, 10% pyrite and 92% arsenopyrite were oxidized. The analysis of the microbial populations in the reactors revealed differences in the total number of microorganisms and their species composition. Thus, it was shown that the use of various carbon sources made it possible to increase the intensity of the concentrate bio-oxidation, since it affected microbial populations performing the process.


2021 ◽  
Vol 8 ◽  
pp. 100180
Author(s):  
S. Matthes ◽  
T. Merbach ◽  
J. Fitschen ◽  
M. Hoffmann ◽  
M. Schlüter

2021 ◽  
Author(s):  
Fabian Schnitter ◽  
Benedikt Riess ◽  
Job Boekhoven

Abstract The ability to store information in chemical reaction networks is essential for evolution, calculations, and, more generally, for the complex behavior, we associate with life. In biology, cellular memory is regulated through transcriptional states that are bistable, i.e., a state that can either be on or off and can be flipped from one to another through a transient signal. Such memory circuits have been realized synthetically through the rewiring of genetic systems in vivo or through the rational design of reaction networks based on DNA and highly evolved enzymes in vitro. Completely bottom-up analogs based on small molecules are rare and hard to design and thus represent a challenge for systems chemistry. In this work, we show that bistability can be designed from an extremely simple non-equilibrium reaction cycle that is coupled to crystallization. The crystals exert the necessary feedback on the reaction cycle required for the bistability resulting in an on-state with assemblies and an off-state without. We can switch the state on and off, such that each state represents volatile memory that can be stored in continuously stirred tank reactors indefinitely despite the fact that molecules are turned over on a minute-timescale. We showcase the system’s abilities by creating a matrix display that can store images and by performing Boolean logic by coupling several switches together.


Sign in / Sign up

Export Citation Format

Share Document