Mining of novel species-specific primers for PCR detection of Listeria monocytogenes based on genomic approach

2015 ◽  
Vol 31 (12) ◽  
pp. 1955-1966 ◽  
Author(s):  
Tingting Tao ◽  
Qiming Chen ◽  
Xiaomei Bie ◽  
Fengxia Lu ◽  
Zhaoxin Lu
2004 ◽  
Vol 70 (1) ◽  
pp. 167-173 ◽  
Author(s):  
Takahiro Matsuki ◽  
Koichi Watanabe ◽  
Junji Fujimoto ◽  
Yukiko Kado ◽  
Toshihiko Takada ◽  
...  

ABSTRACT A highly sensitive quantitative PCR detection method has been developed and applied to the distribution analysis of human intestinal bifidobacteria by combining real-time PCR with Bifidobacterium genus- and species-specific primers. Real-time PCR detection of serially diluted DNA extracted from cultured bifidobacteria was linear for cell counts ranging from 106 to 10 cells per PCR assay. It was also found that the method was applicable to the detection of Bifidobacterium in feces when it was present at concentrations of >106 cells per g of feces. Concerning the distribution of Bifidobacterium species in intestinal flora, the Bifidobacterium adolescentis group, the Bifidobacterium catenulatum group, and Bifidobacterium longum were found to be the three predominant species by examination of DNA extracted from the feces of 46 healthy adults. We also examined changes in the population and composition of Bifidobacterium species in human intestinal flora of six healthy adults over an 8-month period. The results showed that the composition of bifidobacterial flora was basically stable throughout the test period.


Author(s):  
Maureen W. Kariuki ◽  
Elijah K. Githui ◽  
Andrew G. McArthur ◽  
Rashid A. Aman ◽  
Nyamu M. Njagi ◽  
...  

Novel gene targets are needed in accurate diagnosis of malaria. Previous studies show that the dynein light chains (dlc) in Plasmodium are uniquely conserved within the species, possibly due to their role as the cargo adptor moiety. This study aimed at the development of PCR assay for the detection of Plasmodium based on the (dlc-Tctex) as a genus and species-specific tool in malaria diagnosis. Multiple primers were designed based on Plasmodium spp dlc(Tctex) genes. The primers were applied on PCR to detect malaria on clinical samples and on laboratory maintained isolates of P. falciparum and P. vivax for human infecting species and P. knowlesi and P. cynomolgi for zoonoses infection involving primates. The amplified PCR fragments were gene cleaned and sequenced. BLASTn e-values output from the raw nucleotide queries supports that the genes are uniquely conserved.  Species-specific primers amplified P.  falciparum infections with no cross-reactivity to P. vivax, P. knowlesi or P. cynomolgi species. In this assay only 11 out of the 30 microscope positive malaria positive clinical blood samples were positive for PCR detection of P. falciparum infection. Primers designed for Plasmodium genus amplified the target band in all clinical malaria samples but also had another specific band amplification. This preliminary data demonstrate that a species-specific dlc(Tctex) PCR assay can be used for detection of P. falciparum and optimized genus primers can be applied to differentiate mixed malaria infections.


Food Control ◽  
2021 ◽  
pp. 108478
Author(s):  
Baoqing Zhou ◽  
Qinghua Ye ◽  
Moutong Chen ◽  
Fan Li ◽  
Xinran Xiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document