Joint impact of CEE and IQI on NOMA with full-duplex relaying system

2021 ◽  
Author(s):  
Kai Yang ◽  
Xiao Yan ◽  
Qian Wang ◽  
Kaiyu Qin
Keyword(s):  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Phu Tran Tin ◽  
Phan Van-Duc ◽  
Tan N. Nguyen ◽  
Le Anh Vu

In this paper, we investigate the full-duplex (FD) decode-and-forward (DF) cooperative relaying system, whereas the relay node can harvest energy from radiofrequency (RF) signals of the source and then utilize the harvested energy to transfer the information to the destination. Specifically, a hybrid time-power switching-based relaying method is adopted, which leverages the benefits of time-switching relaying (TSR) and power-splitting relaying (PSR) protocols. While energy harvesting (EH) helps to reduce the limited energy at the relay, full-duplex is one of the most important techniques to enhance the spectrum efficiency by its capacity of transmitting and receiving signals simultaneously. Based on the proposed system model, the performance of the proposed relaying system in terms of the ergodic capacity (EC) is analyzed. Specifically, we derive the exact closed form for upper bound EC by applying some special function mathematics. Then, the Monte Carlo simulations are performed to validate the mathematical analysis and numerical results.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 201566-201576
Author(s):  
Syed Adil Abbas Kazmi ◽  
Sinem Coleri

Author(s):  
Kui Xu ◽  
Xiaochen Xia ◽  
Youyun Xu ◽  
Dongmei Zhang

Massive MIMO full-duplex relaying (MM-FDR), where multiple source-destination pairs communicate simultaneously with the help of a common full-duplex relay equipped with very large antenna arrays, is studied in this chapter. Different from the traditional MM-FDR protocol, a general model where sources/destinations are allowed to equip with multiple antennas is considered. The effect of hardware impairments is taken into consideration, and is modeled using transmit/receive distortion noises. We propose a low complexity hardware impairments aware transceiver scheme (named as HIA scheme) to mitigate the distortion noises by exploiting the statistical knowledge of channels and antenna arrays at sources and destinations. A joint degree of freedom and power optimization algorithm is presented to further optimize the spectral efficiency of HIA based MM-FDR. The results show that the HIA scheme can mitigate the ``ceiling effect” appears in traditional MM-FDR protocol, if the numbers of antennas at sources and destinations can scale with that at the relay.


Sign in / Sign up

Export Citation Format

Share Document